Rofo 2022; 194(07): 728-736
DOI: 10.1055/a-1752-0839
Review

Perspectives of Evidence-Based Therapy Management

Evidenzbasierte Therapiesteuerung der Zukunft
1   Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany
2   Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
,
Volkmar Schulz
1   Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany
2   Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
› Author Affiliations

Abstract

Background Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes.

Method Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used.

Results Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases.

Conclusion Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches.

Key Points:

  • Molecular imaging and radiomics provide valuable complementary disease biomarkers.

  • Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.

  • Synthetic data generation may become essential in the development process of future AI methods.

Citation Format

  • Kiessling F, Schulz V, . Perspectives of Evidence-Based Therapy Management. Fortschr Röntgenstr 2022; 194: 728 – 736

Zusammenfassung

Hintergrund Therapeutika, die spezifisch biologische Prozesse adressieren, erfordern oft eine wesentlich feinere Auswahl von Patienten und Subklassifizierung der Erkrankungen. Diagnostische Verfahren müssen die Erkrankungen daher in ausreichender Detailtiefe beschreiben, um die Auswahl der geeigneten Therapie zu ermöglichen und das Ansprechen auf die Therapie sensitiv verfolgen zu können. Anatomische Merkmale sind hierfür oftmals nicht ausreichend. Die Abbildung molekularer und pathophysiologischer Prozesse ist daher notwendig.

Methode Man kann 2 Strategien bei der Bildgebung verfolgen: Molekulare Bildgebung versucht wenige Biomarker darzustellen, die Schlüsselfunktionen in pathologischen Prozessen einnehmen. Alternativ kann man aus der Zusammenschau multipler (unspezifischer) Bildgebungs- und Omics-Marker sowie anderer klinischer Auffälligkeiten Muster erkennen, die biologische Prozesse beschreiben. Hierbei werden zunehmend AI-unterstützte Verfahren eingesetzt.

Ergebnisse Beide Strategien der evidenzbasierten Therapiesteuerung werden in dem Übersichtsartikel erläutert und Beispiele sowie klinische Erfolge aufgeführt. Es werden Übersichten zu klinisch zugelassenen molekularen Diagnostika und Entscheidungsunterstützungssystemen gegeben. Da zuverlässige, repräsentative und ausreichend große Datensätze weitere wichtige Voraussetzungen für AI-unterstützte, multiparametrische Analysen sind, werden ferner Konzepte präsentiert, um Daten strukturiert verfügbar zu machen, z. B. mittels Generative Adversarial Networks Datenbanken mit virtuellen Fällen zu ergänzen, bzw. vollständig anonyme Referenzdatenbanken aufzubauen.

Schlussfolgerung Die molekulare Bildgebung und die computerunterstützte Clusteranalyse von multiplen diagnostischen Daten sind komplementäre Verfahren, um pathophysiologische Prozesse zu beschreiben. Beide Verfahren haben das Potenzial, teilweise eigenständig aber auch in kombinierten Ansätzen die zukünftige Steuerung von Therapien evidenzbasiert zu verbessern.

Kernaussagen:

  1. Molekulare Bildgebung und Radiomics liefern wertvolle ergänzende Krankheits-Biomarker.

  2. Datengesteuerte, modellbasierte und hybride modellbasierte integrierte Diagnostik fördert die Präzisionsmedizin.

  3. Die synthetische Datengenerierung spielt im Entwicklungsprozess zukünftiger KI-Methoden eine wichtige Rolle.



Publication History

Received: 27 October 2021

Accepted: 08 January 2022

Article published online:
11 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sackett DL, Rosenberg WM, Gray JA. et al. Evidence based medicine: what it is and what it isnʼt. BMJ 1996; 312: 71-72
  • 2 Guyatt G, Cairns J, Churchill D. et al. Evidence-Based Medicine: A New Approach to Teaching the Practice of Medicine. JAMA 1992; 268: 2420-2425
  • 3 Weissleder R, Schwaiger MC, Gambhir SS. et al. Imaging approaches to optimize molecular therapies. Sci Transl Med 2016; 8: 355ps16
  • 4 Grimm J, Kiessling F, Pichler BJ. Quo Vadis, Molecular Imaging?. J Nucl Med 2020; 61: 1428-1434
  • 5 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016; 278: 563-577
  • 6 Lambin P, Rios-Velazquez E, Leijenaar R. et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48: 441-446
  • 7 https://www.gartner.com/en/documents/3887767/understanding-gartner-s-hype-cycles
  • 8 Theek B, Magnuska Z, Gremse F. et al. Automation of data analysis in molecular cancer imaging and its potential impact on future clinical practice. Methods 2021; 188: 30-36
  • 9 Merkle EM, Zech CJ, Bartolozzi C. et al. Consensus report from the 7th International Forum for Liver Magnetic Resonance Imaging. Eur Radiol 2016; 26: 674-682
  • 10 Willmann JK, Bonomo L, Testa AC. et al. Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 2017; 35: 2133-2140
  • 11 Makowski MR, Wiethoff AJ, Blume U. et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 2011; 17: 383-388
  • 12 Sun Q, Baues M, Klinkhammer BM. et al. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Sci Transl Med 2019; 11: eaat4865
  • 13 Moek KL, Giesen D, Kok IC. et al. Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 2017; 58 (Suppl. 02) 83S-90S
  • 14 Haberkorn U, Kratochwil C, Giesel F. Internal Radiation Therapy. Recent Results Cancer Res 2020; 216: 881-902
  • 15 Kiessling F. The changing face of cancer diagnosis: From computational image analysis to systems biology. Eur Radiol 2018; 28: 3160-3164
  • 16 Aerts HJWL, Velazquez ER, Leijenaar RTH. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006
  • 17 Chen T, Guestrin C. Xgboost: A scalable tree boosting system In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 785-794
  • 18 Nishio M, Nishizawa M, Sugiyama O. et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PloS one 2018; 13 (04) e0195875
  • 19 Mueller F, Schug D, Hallen P. et al. A novel DOI positioning algorithm for monolithic scintillator crystals in PET based on gradient tree boosting. IEEE Transactions on Radiation and Plasma Medical Sciences 2018; 3 (04) 465-474
  • 20 Patterson EA, Whelan MP. A framework to establish credibility of computational models in biology. Prog Biophys Mol Biol 2017; 129: 13-19
  • 21 Donoho DL. Compressed sensing. IEEE Transactions on information theory 2006; 52 (04) 1289-1306
  • 22 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, An Official Journal of the International Society for Magnetic Resonance in Medicine 2007; 58 (06) 1182-1195
  • 23 Rueckert D, Schnabel JA. Model-based and data-driven strategies in medical image computing. Proceedings of the IEEE 2019; 108 (01) 110-124
  • 24 Li T, Thorndyke B, Schreibmann E. et al. Model‐based image reconstruction for four‐dimensional PET. Medical physics 2006; 33 (05) 1288-1298
  • 25 Noël PB, Köhler T, Fingerle AA. et al. Evaluation of an iterative model–based reconstruction algorithm for low-tube-voltage (80 kVp) computed tomography angiography. Journal of Medical Imaging 2014; 1 (03) 033501
  • 26 Salomon A, Goldschmidt B, Botnar R. et al. A self-normalization reconstruction technique for PET scans using the positron emission data. IEEE transactions on medical imaging 2012; 31 (12) 2234-2240
  • 27 Christensen-Jeffries K, Couture O, Dayton PA. et al. Super-resolution ultrasound imaging. Ultrasound Med Biol 2020; 46: 865-891
  • 28 Opacic T, Dencks S, Theek B. et al. Motion Model Ultrasound Localization Microscopy for Preclinical and Clinical Multiparametric Tumor Characterization. Nat Commun 2018; 9: 1527
  • 29 Gremse F, Grouls C, Palmowski M. et al. Virtual elastic sphere processing enables reproducible quantification of vessel stenosis in CT and MR angiographies. Radiology 2011; 260: 709-717
  • 30 Díaz V, Viceconti M, Stroetmann V. et al. Digital Patient Roadmap. DISCIPULUS Proj Horiz. 2020 https://www.vph-institute.org/discipulus.html
  • 31 Herrgårdh T, Madai VI, Kelleher JD. et al. Hybrid modelling for stroke care: Review and suggestions of new approaches for risk assessment and simulation of scenarios. Neuroimage Clin 2021; 31: 102694
  • 32 Han T, Nebelung S, Pedersoli F. et al. Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization. Nature Communications 2021; 12 (01) 1-11
  • 33 Nishio M, Nishizawa M, Sugiyama O. et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PloS one 2018; 13 (04) e0195875
  • 34 Armbrust M, Fox A, Griffith R. et al. A view of cloud computing. Communications of the ACM 2010; 53 (04) 50-58
  • 35 Foran DJ, Chen W, Chu H. et al Roadmap to a comprehensive clinical data warehouse for precision medicine applications in oncology. Cancer informatics 2017; 16 p.1176935117694349. DOI: 10.1177/1176935117694349.
  • 36 Ristevski B, Chen M. Big data analytics in medicine and healthcare. Journal of integrative bioinformatics 2018; 15 (03) DOI: 10.1515/jib-2017-0030.
  • 37 Han T, Nebelung S, Haarburger C. et al. Breaking medical data sharing boundaries by using synthesized radiographs. Science advances 2020; 6 (49) eabb7973