Nuklearmedizin 2022; 61(03): 262-272
DOI: 10.1055/a-1759-4238
Review

Radioembolization, Principles and indications

Radioembolisation, Grundlage und Indikationen
Hojjat Ahmadzadehfar
1   Nuclear Medicine, Klinikum Westfalen GmbH, Dortmund, Germany
,
Harun Ilhan
2   Department of Nuclear Medicine, Klinikum der Universität München, Munich, Germany
3   Die Radiologie, Practice for Radiology, Nuclear Medicine, and Radiation Oncology, Munich, Germany
,
Marnix G. E. H. Lam
4   Radiology and Nuclear Medicine, University of Utrecht Faculty of Medicine, Utrecht, Netherlands
,
Miriam Sraieb
5   Nuclear Medicine, University Hospital Essen, Germany
,
Lars Stegger
6   Nuclear Medicine, University Hospital Münster, Germany
› Author Affiliations

Abstract

Radioembolization is the selective application of radionuclide-loaded microspheres into liver arteries for the therapy of liver tumours and metastases. In this review, we focused on therapy planning and dosimetry, as well as the main indications of 90Y-glass and resin microspheres and 166Ho-microspheres.

Zusammenfassung

Radioembolisation ist die selektive Applikation Radionuklid-beladener Mikrosphären in Leberarterien zur Therapie von Lebertumoren und -metastasen. In diesem Review konzentrierten wir uns auf die Therapieplanung und Dosimetrie sowie auf die Hauptindikationen von 90Y-Glas- und Harz-Mikrosphären und 166Ho-Mikrosphären.



Publication History

Received: 05 December 2021

Accepted: 24 January 2022

Article published online:
30 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med 2010; 40: 105-121 DOI: 10.1053/j.semnuclmed.2009.11.001.
  • 2 Ahmadzadehfar H, Habibi E, Ezziddin S. et al. Survival after 131I-labeled lipiodol therapy for hepatocellular carcinoma. A single-center study based on a long-term follow-up. Nuklearmedizin 2014; 53: 46-53 DOI: 10.3413/Nukmed-0610-13-07.
  • 3 Ahmadzadehfar H, Sabet A, Wilhelm K. et al. Iodine-131-lipiodol therapy in hepatic tumours. Methods 2011; 55: 246-252 DOI: 10.1016/j.ymeth.2011.05.003.
  • 4 van Roekel C, Bastiaannet R, Smits MLJ. et al. Dose-Effect Relationships of (166)Ho Radioembolization in Colorectal Cancer. J Nucl Med 2021; 62: 272-279 DOI: 10.2967/jnumed.120.243832.
  • 5 Vogel A, Cervantes A, Chau I. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30: 871-873 DOI: 10.1093/annonc/mdy510.
  • 6 European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236 DOI: 10.1016/j.jhep.2018.03.019.
  • 7 Valle JW, Borbath I, Khan SA. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27: v28-v37 DOI: 10.1093/annonc/mdw324.
  • 8 Benson AB, D'Angelica MI, Abbott DE. et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19: 541-565 DOI: 10.6004/jnccn.2021.0022.
  • 9 Pavel M, O'Toole D, Costa F. et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016; 103: 172-185 DOI: 10.1159/000443167.
  • 10 Pavel M, Oberg K, Falconi M. et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31: 844-860 DOI: 10.1016/j.annonc.2020.03.304.
  • 11 Van Cutsem E, Cervantes A, Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27: 1386-1422 DOI: 10.1093/annonc/mdw235.
  • 12 Benson AB, Venook AP, Al-Hawary MM. et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19: 329-359 DOI: 10.6004/jnccn.2021.0012.
  • 13 Kim SP, Cohalan C, Kopek N. et al. A guide to (90)Y radioembolization and its dosimetry. Phys Med 2019; 68: 132-145 DOI: 10.1016/j.ejmp.2019.09.236.
  • 14 Padia SA, Lewandowski RJ, Johnson GE. et al. Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. J Vasc Interv Radiol 2017; 28: 1-15 DOI: 10.1016/j.jvir.2016.09.024.
  • 15 Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol 2014; 4: 198 DOI: 10.3389/fonc.2014.00198.
  • 16 Levillain H, Bagni O, Deroose CM. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48: 1570-1584 DOI: 10.1007/s00259-020-05163-5.
  • 17 Cremonesi M, Chiesa C, Strigari L. et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4: 210 DOI: 10.3389/fonc.2014.00210.
  • 18 Talbot JN, Fartoux L, Balogova S. et al. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 2010; 51: 1699-1706 DOI: 10.2967/jnumed.110.075507.
  • 19 Carideo L, Prosperi D, Panzuto F. et al. Role of Combined [(68)Ga]Ga-DOTA-SST Analogues and [(18)F]FDG PET/CT in the Management of GEP-NENs: A Systematic Review. J Clin Med 2019; 8 DOI: 10.3390/jcm8071032.
  • 20 Papadakis GZ, Karantanas AH, Marias K. et al. Current status and future prospects of PET-imaging applications in patients with gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs). Eur J Radiol 2021; 143: 109932 DOI: 10.1016/j.ejrad.2021.109932.
  • 21 Ilhan H, Lindner S, Todica A. et al. Biodistribution and first clinical results of (18)F-SiFAlin-TATE PET: a novel (18)F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2020; 47: 870-880 DOI: 10.1007/s00259-019-04501-6.
  • 22 Filippi L, Schillaci O, Cianni R. et al. Imaging Neuroendocrine Hepatic Metastases Following (90)Y-Radioembolization: Is It Time to Implement Routine Use of PET Molecular/Metabolic Probes?. Cardiovasc Intervent Radiol 2019; 42: 933-934 DOI: 10.1007/s00270-019-02186-w.
  • 23 Aujay G, Debordeaux F, Blanc JF. et al. 18F-choline PET-computed tomography for the prediction of early treatment responses to transarterial radioembolization in patients with hepatocellular carcinoma. Nucl Med Commun 2021; 42: 633-638 DOI: 10.1097/MNM.0000000000001383.
  • 24 Hartenbach M, Weber S, Albert NL. et al. Evaluating Treatment Response of Radioembolization in Intermediate-Stage Hepatocellular Carcinoma Patients Using 18F-Fluoroethylcholine PET/CT. J Nucl Med 2015; 56: 1661-1666 DOI: 10.2967/jnumed.115.158758.
  • 25 Hirmas N, Leyh C, Sraieb M. et al. (68)Ga-PSMA-11 PET/CT Improves Tumor Detection and Impacts Management in Patients with Hepatocellular Carcinoma. J Nucl Med 2021; 62: 1235-1241 DOI: 10.2967/jnumed.120.257915.
  • 26 Ilhan H, Goritschan A, Paprottka P. et al. Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization. J Nucl Med 2015; 56: 333-338 DOI: 10.2967/jnumed.114.150565.
  • 27 Chiesa C, Maccauro M. (166)Ho microsphere scout dose for more accurate radioembolization treatment planning. Eur J Nucl Med Mol Imaging 2020; 47: 744-747 DOI: 10.1007/s00259-019-04617-9.
  • 28 Ahmadzadehfar H, Duan H, Haug AR. et al. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging 2014; 41 (Suppl. 01) S115-S124 DOI: 10.1007/s00259-013-2675-5.
  • 29 Hamoui N, Minocha J, Memon K. et al. Prophylactic embolization of the gastroduodenal and right gastric arteries is not routinely necessary before radioembolization with glass microspheres. J Vasc Interv Radiol 2013; 24: 1743-1745 DOI: 10.1016/j.jvir.2013.07.011.
  • 30 Borggreve AS, Landman A, Vissers CMJ. et al. Radioembolization: Is Prophylactic Embolization of Hepaticoenteric Arteries Necessary? A Systematic Review. Cardiovasc Intervent Radiol 2016; 39: 696-704 DOI: 10.1007/s00270-016-1310-9.
  • 31 Dittmann H, Kopp D, Kupferschlaeger J. et al. A Prospective Study of Quantitative SPECT/CT for Evaluation of Lung Shunt Fraction Before SIRT of Liver Tumors. J Nucl Med 2018; 59: 1366-1372 DOI: 10.2967/jnumed.117.205203.
  • 32 Elsayed M, Cheng B, Xing M. et al. Comparison of Tc-99m MAA Planar Versus SPECT/CT Imaging for Lung Shunt Fraction Evaluation Prior to Y-90 Radioembolization: Are We Overestimating Lung Shunt Fraction?. Cardiovasc Intervent Radiol 2021; 44: 254-260 DOI: 10.1007/s00270-020-02638-8.
  • 33 Elschot M, Nijsen JF, Lam MG. et al. ((9)(9)m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with (1)(6)(6)Ho-microspheres. Eur J Nucl Med Mol Imaging 2014; 41: 1965-1975 DOI: 10.1007/s00259-014-2784-9.
  • 34 Grosser OS, Ruf J, Kupitz D. et al. Pharmacokinetics of 99mTc-MAA- and 99mTc-HSA-Microspheres Used in Preradioembolization Dosimetry: Influence on the Liver-Lung Shunt. J Nucl Med 2016; 57: 925-927 DOI: 10.2967/jnumed.115.169987.
  • 35 Ahmadzadehfar H, Sabet A, Biermann K. et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med 2010; 51: 1206-1212 DOI: 10.2967/jnumed.109.074559.
  • 36 Knesaurek K, Tuli A, Pasik SD. et al. Quantitative comparison of pre-therapy (99m)Tc-macroaggregated albumin SPECT/CT and post-therapy PET/MR studies of patients who have received intra-arterial radioembolization therapy with (90)Y microspheres. Eur J Radiol 2018; 109: 57-61 DOI: 10.1016/j.ejrad.2018.10.015.
  • 37 Thomas MA, Mahvash A, Abdelsalam M. et al. Planning dosimetry for (90) Y radioembolization with glass microspheres: Evaluating the fidelity of (99m) Tc-MAA and partition model predictions. Med Phys 2020; 47: 5333-5342 DOI: 10.1002/mp.14452.
  • 38 Wondergem M, Smits ML, Elschot M. et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 2013; 54: 1294-1301 DOI: 10.2967/jnumed.112.117614.
  • 39 Kunnen B, Dietze MMA, Braat A. et al. Feasibility of imaging (90) Y microspheres at diagnostic activity levels for hepatic radioembolization treatment planning. Med Phys 2020; 47: 1105-1114 DOI: 10.1002/mp.13974.
  • 40 Louie JD, Kothary N, Kuo WT. et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization. J Vasc Interv Radiol 2009; 20: 606-613 DOI: 10.1016/j.jvir.2009.01.021.
  • 41 Orth RC, Wallace MJ, Kuo MD. et al. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 2009; 20: S538-S544 DOI: 10.1016/j.jvir.2009.04.026.
  • 42 van den Hoven AF, Prince JF, de Keizer B. et al. Use of C-Arm Cone Beam CT During Hepatic Radioembolization: Protocol Optimization for Extrahepatic Shunting and Parenchymal Enhancement. Cardiovasc Intervent Radiol 2016; 39: 64-73 DOI: 10.1007/s00270-015-1146-8.
  • 43 Rodriguez-Fraile M, Ezponda A, Grisanti F. et al. The joint use of (99m)Tc-MAA-SPECT/CT and cone-beam CT optimizes radioembolization planning. EJNMMI Res 2021; 11: 23 DOI: 10.1186/s13550-021-00764-z.
  • 44 Tacher V, Radaelli A, Lin M. et al. How I do it: Cone-beam CT during transarterial chemoembolization for liver cancer. Radiology 2015; 274: 320-334 DOI: 10.1148/radiol.14131925.
  • 45 Braat M, de Jong HW, Seinstra BA. et al. Hepatobiliary scintigraphy may improve radioembolization treatment planning in HCC patients. EJNMMI Res 2017; 7: 2 DOI: 10.1186/s13550-016-0248-x.
  • 46 van der Velden S, Braat M, Labeur TA. et al. A Pilot Study on Hepatobiliary Scintigraphy to Monitor Regional Liver Function in (90)Y Radioembolization. J Nucl Med 2019; 60: 1430-1436 DOI: 10.2967/jnumed.118.224394.
  • 47 Labeur TA, Cieslak KP, Van Gulik TM. et al. The utility of 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT/CT for selective internal radiation therapy in hepatocellular carcinoma. Nucl Med Commun 2020; 41: 740-749 DOI: 10.1097/MNM.0000000000001224.
  • 48 Allimant C, Deshayes E, Kafrouni M. et al. Hepatobiliary Scintigraphy and Glass (90)Y Radioembolization with Personalized Dosimetry: Dynamic Changes in Treated and Nontreated Liver. Diagnostics (Basel) 2021; 11 DOI: 10.3390/diagnostics11060931.
  • 49 Willowson KP, Schembri GP, Bernard EJ. et al. Quantifying the effects of absorbed dose from radioembolisation on healthy liver function with [(99m)Tc]TcMebrofenin. Eur J Nucl Med Mol Imaging 2020; 47: 838-848 DOI: 10.1007/s00259-020-04686-1.
  • 50 Bastiaannet R, Kappadath SC, Kunnen B. et al. The physics of radioembolization. EJNMMI Phys 2018; 5: 22 DOI: 10.1186/s40658-018-0221-z.
  • 51 Dezarn WA, Cessna JT, DeWerd LA. et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys 2011; 38: 4824-4845 DOI: 10.1118/1.3608909.
  • 52 Tafti BA, Padia SA. Dosimetry of Y-90 Microspheres Utilizing Tc-99m SPECT and Y-90 PET. Semin Nucl Med 2019; 49: 211-217 DOI: 10.1053/j.semnuclmed.2019.01.005.
  • 53 Levillain H, Duran Derijckere I, Marin G. et al. (90)Y-PET/CT-based dosimetry after selective internal radiation therapy predicts outcome in patients with liver metastases from colorectal cancer. EJNMMI Res 2018; 8: 60 DOI: 10.1186/s13550-018-0419-z.
  • 54 Garin E, Tselikas L, Guiu B. et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6: 17-29 DOI: 10.1016/S2468-1253(20)30290-9.
  • 55 Salem R, Gordon AC, Mouli S. et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2016; 151: 1155-1163 e1152 DOI: 10.1053/j.gastro.2016.08.029.
  • 56 Ahmadzadehfar H, Meyer C, Ezziddin S. et al. Hepatic volume changes induced by radioembolization with 90Y resin microspheres. A single-centre study. Eur J Nucl Med Mol Imaging 2013; 40: 80-90 DOI: 10.1007/s00259-012-2253-2.
  • 57 Gaba RC, Lewandowski RJ, Kulik LM. et al. Radiation lobectomy: preliminary findings of hepatic volumetric response to lobar yttrium-90 radioembolization. Annals of surgical oncology 2009; 16: 1587-1596 DOI: 10.1245/s10434-009-0454-0.
  • 58 Fernandez-Ros N, Silva N, Bilbao JI. et al. Partial liver volume radioembolization induces hypertrophy in the spared hemiliver and no major signs of portal hypertension. HPB: the official journal of the International Hepato Pancreato Biliary Association 2013; DOI: 10.1111/hpb.12095.
  • 59 Kolligs FT, Bilbao JI, Jakobs T. et al. Pilot randomized trial of selective internal radiation therapy vs. chemoembolization in unresectable hepatocellular carcinoma. Liver Int 2015; 35: 1715-1721 DOI: 10.1111/liv.12750.
  • 60 Salem R, Lewandowski RJ, Kulik L. et al. Radioembolization results in longer time-to-progression and reduced toxicity compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 2011; 140: 497-507 e492 DOI: 10.1053/j.gastro.2010.10.049.
  • 61 Salem R, Gilbertsen M, Butt Z. et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol Hepatol 2013; 11: 1358-1365 e1351 DOI: 10.1016/j.cgh.2013.04.028.
  • 62 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18: 1624-1636 DOI: 10.1016/S1470-2045(17)30683-6.
  • 63 Chow PKH, Gandhi M, Tan SB. et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J Clin Oncol 2018; 36: 1913-1921 DOI: 10.1200/JCO.2017.76.0892.
  • 64 Garin E, Lenoir L, Edeline J. et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging 2013; 40: 1057-1068 DOI: 10.1007/s00259-013-2395-x.
  • 65 d'Abadie P, Walrand S, Hesse M. et al. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42: 747-754 DOI: 10.1097/MNM.0000000000001395.
  • 66 Hendlisz A, Van den Eynde M, Peeters M. et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 2010; 28: 3687-3694 DOI: 10.1200/JCO.2010.28.5643.
  • 67 Mulcahy MF, Mahvash A, Pracht M. et al. Radioembolization With Chemotherapy for Colorectal Liver Metastases: A Randomized, Open-Label, International, Multicenter, Phase III Trial. J Clin Oncol 2021; DOI: 10.1200/JCO.21.01839.
  • 68 Cosimelli M, Golfieri R, Cagol PP. et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010; 103: 324-331 DOI: 10.1038/sj.bjc.6605770.
  • 69 Garlipp B, de Baere T, Damm R. et al. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization. Hepatology 2014; 59: 1864-1873 DOI: 10.1002/hep.26947.
  • 70 Al-Adra DP, Gill RS, Axford SJ. et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol 2015; 41: 120-127 DOI: 10.1016/j.ejso.2014.09.007.
  • 71 Cardoso F, Paluch-Shimon S, Senkus E. et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol 2020; 31: 1623-1649 DOI: 10.1016/j.annonc.2020.09.010.
  • 72 Feretis M, Solodkyy A. Yttrium-90 radioembolization for unresectable hepatic metastases of breast cancer: A systematic review. World J Gastrointest Oncol 2020; 12: 228-236 DOI: 10.4251/wjgo.v12.i2.228.
  • 73 Ezziddin S, Meyer C, Kahancova S. et al. 90Y Radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med 2012; 53: 1663-1669 DOI: 10.2967/jnumed.112.107482.
  • 74 Braat A, Ahmadzadehfar H, Kappadath SC. et al. Radioembolization with (90)Y Resin Microspheres of Neuroendocrine Liver Metastases After Initial Peptide Receptor Radionuclide Therapy. Cardiovasc Intervent Radiol 2020; 43: 246-253 DOI: 10.1007/s00270-019-02350-2.
  • 75 Braat A, Kappadath SC, Ahmadzadehfar H. et al. Radioembolization with (90)Y Resin Microspheres of Neuroendocrine Liver Metastases: International Multicenter Study on Efficacy and Toxicity. Cardiovasc Intervent Radiol 2019; 42: 413-425 DOI: 10.1007/s00270-018-2148-0.
  • 76 Samim M, van Veenendaal LM, Braat M. et al. Recommendations for radioembolisation after liver surgery using yttrium-90 resin microspheres based on a survey of an international expert panel. Eur Radiol 2017; 27: 4923-4930 DOI: 10.1007/s00330-017-4889-6.
  • 77 Deutsche Gesellschaft fur Gastroenterologie V-uS, Netzwerk Neuroendokrine Tumoren e. V., Bundesorganisation Selbsthilfe NeuroEndokrine Tumoren e V et al. [Practice guideline neuroendocrine tumors – AWMF-Reg. 021-27]. Z Gastroenterol 2018; 56: 583-681 DOI: 10.1055/a-0604-2924.
  • 78 Elschot M, Nijsen JF, Dam AJ. et al. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One 2011; 6: e26174 DOI: 10.1371/journal.pone.0026174.
  • 79 van de Maat GH, Seevinck PR, Elschot M. et al. MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation. Eur Radiol 2013; 23: 827-835 DOI: 10.1007/s00330-012-2648-2.
  • 80 Nijsen JF, Seppenwoolde JH, Havenith T. et al. Liver tumors: MR imaging of radioactive holmium microspheres--phantom and rabbit study. Radiology 2004; 231: 491-499 DOI: 10.1148/radiol.2312030594.
  • 81 Smits MLJ, Dassen MG, Prince JF. et al. The superior predictive value of (166)Ho-scout compared with (99m)Tc-macroaggregated albumin prior to (166)Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging 2020; 47: 798-806 DOI: 10.1007/s00259-019-04460-y.
  • 82 Smits ML, Nijsen JF, van den Bosch MA. et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 2012; 13: 1025-1034 DOI: 10.1016/S1470-2045(12)70334-0.
  • 83 Prince JF, van den Bosch M, Nijsen JFW. et al. Efficacy of Radioembolization with (166)Ho-Microspheres in Salvage Patients with Liver Metastases: A Phase 2 Study. J Nucl Med 2018; 59: 582-588 DOI: 10.2967/jnumed.117.197194.
  • 84 Padhani AR, Ollivier L. The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol 2001; 74: 983-986 DOI: 10.1259/bjr.74.887.740983.
  • 85 Bastiaannet R, van Roekel C, Smits MLJ. et al. First Evidence for a Dose-Response Relationship in Patients Treated with (166)Ho Radioembolization: A Prospective Study. J Nucl Med 2020; 61: 608-612 DOI: 10.2967/jnumed.119.232751.
  • 86 Braat A, Bruijnen RCG, van Rooij R. et al. Additional holmium-166 radioembolisation after lutetium-177-dotatate in patients with neuroendocrine tumour liver metastases (HEPAR PLuS): a single-centre, single-arm, open-label, phase 2 study. Lancet Oncol 2020; 21: 561-570 DOI: 10.1016/S1470-2045(20)30027-9.
  • 87 van Roekel C, van den Hoven AF, Bastiaannet R. et al. Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur J Nucl Med Mol Imaging 2021; 48: 1658-1668 DOI: 10.1007/s00259-020-05079-0.
  • 88 Reinders-Hut MTM, Smits ML, van Erpecum KJ. et al Safety and efficacy of holmium-166 radioembolization in hepatocellular carcinoma: the HEPAR Primary study. ECIO; 2021; Online