Rofo 2022; 194(09): 983-992
DOI: 10.1055/a-1775-8633
Review

Multiparametric Functional MRI of the Kidney: Current State and Future Trends with Deep Learning Approaches

Multiparametrische funktionelle Nierenbildgebung in der MRT: Aktueller Status und zukunftsweisende Entwicklungen mit Deep Learning
Cecilia Zhang
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
,
Martin Schwartz
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
2   Institute of Signal Processing and System Theory, University of Stuttgart, Germany
,
3   Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Tübingen, Germany
,
Petros Martirosian
4   Section on Experimental Radiology, University Hospital Tübingen, Tubingen, Germany
,
Ferdinand Seith
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
› Author Affiliations

Abstract

Background Until today, assessment of renal function has remained a challenge for modern medicine. In many cases, kidney diseases accompanied by a decrease in renal function remain undetected and unsolved, since neither laboratory tests nor imaging diagnostics provide adequate information on kidney status. In recent years, developments in the field of functional magnetic resonance imaging with application to abdominal organs have opened new possibilities combining anatomic imaging with multiparametric functional information. The multiparametric approach enables the measurement of perfusion, diffusion, oxygenation, and tissue characterization in one examination, thus providing more comprehensive insight into pathophysiological processes of diseases as well as effects of therapeutic interventions. However, application of multiparametric fMRI in the kidneys is still restricted mainly to research areas and transfer to the clinical routine is still outstanding. One of the major challenges is the lack of a standardized protocol for acquisition and postprocessing including efficient strategies for data analysis. This article provides an overview of the most common fMRI techniques with application to the kidney together with new approaches regarding data analysis with deep learning.

Methods This article implies a selective literature review using the literature database PubMed in May 2021 supplemented by our own experiences in this field.

Results and Conclusion Functional multiparametric MRI is a promising technique for assessing renal function in a more comprehensive approach by combining multiple parameters such as perfusion, diffusion, and BOLD imaging. New approaches with the application of deep learning techniques could substantially contribute to overcoming the challenge of handling the quantity of data and developing more efficient data postprocessing and analysis protocols. Thus, it can be hoped that multiparametric fMRI protocols can be sufficiently optimized to be used for routine renal examination and to assist clinicians in the diagnostics, monitoring, and treatment of kidney diseases in the future.

Key Points:

  • Multiparametric fMRI is a technique performed without the use of radiation, contrast media, and invasive methods.

  • Multiparametric fMRI provides more comprehensive insight into pathophysiological processes of kidney diseases by combining functional and structural parameters.

  • For broader acceptance of fMRI biomarkers, there is a need for standardization of acquisition, postprocessing, and analysis protocols as well as more prospective studies.

  • Deep learning techniques could significantly contribute to an optimization of data acquisition and the postprocessing and interpretation of larger quantities of data.

Citation Format

  • Zhang C, Schwartz M, Küstner T et al. Multiparametric Functional MRI of the Kidney: Current State and Future Trends with Deep Learning Approaches. Fortschr Röntgenstr 2022; 194: 983 – 992

Zusammenfassung

Hintergrund Bis heute stellt die Erfassung der Nierenfunktion eine Herausforderung für die moderne Medizin dar. Oftmals bleiben funktionelle Einschränkungen der Niere unentdeckt und die Ursachen ungeklärt, da weder die Labordiagnostik noch zur Verfügung stehende Bildgebungsmethoden ausreichend Information über den Funktionsstatus der Nieren liefern. In den letzten Jahren haben Entwicklungen auf dem Gebiet der multiparametrischen funktionellen Magnetresonanztomografie (fMRT) mit Anwendung an abdominellen Organen neue Möglichkeiten zur kombinierten Erfassung anatomischer Strukturen und funktioneller Informationen eröffnet. Dieser multiparametrische Ansatz erlaubt die Messung verschiedener Parameter wie der Perfusion, Diffusion, Oxygenierung und Charakterisierung von Gewebeparametern in einem Untersuchungsvorgang, wodurch umfassendere Einblicke in die pathophysiologischen Prozesse verschiedener Nierenerkrankungen und die Wirkung therapeutischer Ansätze ermöglicht werden. Allerdings ist die Anwendung an der Niere noch auf die Forschung beschränkt und der Schritt in die klinische Routinediagnostik ausstehend. Eine der größten Herausforderungen stellt das Fehlen standardisierter Protokolle für die Akquisition und die Datenverarbeitung sowie effizienter Methoden zur Datenanalyse dar. Dieses Review bietet eine Übersicht über die weitverbreitetsten fMRT-Techniken mit Anwendung an der Niere und zeigt neue Ansätze zur Datenverarbeitung und Analyse mittels Deep Learning auf.

Methode Für diesen Artikel wurde eine selektive Literaturrecherche unter Verwendung der Literaturdatenbank PubMed im Mai 2021 durchgeführt und durch eigene Erfahrungen auf diesem Gebiet ergänzt.

Ergebnisse Die multiparametrische funktionelle MRT ist eine vielversprechende Technik zur Erfassung der Nierenfunktion in einem umfassenderen Ansatz durch kombinierte Untersuchung verschiedener Funktionsparameter wie der Perfusion, Diffusion und Oxygenierung in einem Untersuchungsablauf. Neue Entwicklungen auf dem Gebiet des Deep Learning könnten wesentlich bei der Bewältigung der Datenmengen und der Entwicklung effizienterer Methoden zur Datenverarbeitung und Analyse beitragen. Diese Fortschritte lassen hoffen, dass multiparametrische fMRT-Protokolle bald ausreichend optimiert sind, um über die Forschung hinaus auch im klinischen Alltag in der Diagnostik, dem Monitoring und der Behandlung von Nierenerkrankungen eingesetzt zu werden.

Kernaussagen:

  • Die multiparametrische fMRT umfasst strahlenfreie, nicht invasive und kontrastmittelfreie Techniken.

  • Durch die kombinierte Aufnahme verschiedener funktioneller und struktureller Gewebeparameter können tiefere Einblicke in pathophysiologische Prozesse von Nierenerkrankungen gewonnen werden.

  • Für eine breitere Akzeptanz von MR-Biomarkern in der Zukunft sind die Etablierung von Standards in der Datenakquisition, -verarbeitung und Analyse sowie prospektive Studien notwendig.

  • Deep-Learning-Ansätze könnten einen entscheidenden Beitrag sowohl in der Datenakquisition als auch in der Verarbeitung und Interpretation großer Datenmengen leisten.



Publication History

Received: 24 June 2021

Accepted: 26 January 2022

Article published online:
10 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xie Y, Bowe B, Mokdad AH. et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney International 2018; 94: 567-581
  • 2 Beierwaltes WH, Harrison-Bernard LM, Sullivan JC. et al. Assessment of Renal Function; Clearance, the Renal Microcirculation, Renal Blood Flow, and Metabolic Balance. Comprehensive Physiology: American Cancer Society 2013; 165-200 DOI: 10.1002/cphy.c120008.
  • 3 Trevisani F, Di Marco F, Capitanio U. et al. Renal Function Assessment Gap in Clinical Practice: An Awkward Truth. Kidney & blood pressure research 2020; 45: 166-179
  • 4 Keramida G, James JM, Prescott MC. et al. Pitfalls and Limitations of Radionuclide Renal Imaging in Adults. Seminars in nuclear medicine 2015; 45: 428-439
  • 5 Edelman RR. The history of MR imaging as seen through the pages of radiology. Radiology 2014; 273: S181-S200
  • 6 Caroli A, Pruijm M, Burnier M. et al. Functional magnetic resonance imaging of the kidneys: where do we stand? The perspective of the European COST Action PARENCHIMA. Nephrol Dial Transplant 2018; 33: ii1-ii3
  • 7 Chandarana H, Lee VS. Renal functional MRI: Are we ready for clinical application?. Am J Roentgenol. American journal of roentgenology 2009; 192: 1550-1557
  • 8 Home | Parenchima. 2021 https://renalmri.org/
  • 9 Mendichovszky I, Pullens P, Dekkers I. et al. Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA. Magn Reson Mater Phy 2020; 33: 131-140
  • 10 Martirosian P, Boss A, Schraml C. et al. Magnetic resonance perfusion imaging without contrast media. European journal of nuclear medicine and molecular imaging 2010; 37: 52-64
  • 11 Martirosian P, Klose U, Mader I. et al. FAIR true-FISP perfusion imaging of the kidneys. Magnetic Resonance in Medicine 2004; 51: 353-361
  • 12 Nery F, Buchanan CE, Harteveld AA. et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. Magnetic Resonance Materials in Physics, Biology and Medicine 2020; 33: 141-161
  • 13 Odudu A, Nery F, Harteveld AA. et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2018; 33: ii15-ii21
  • 14 Cai Y, Li Z, Zuo P. et al. Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling. Journal of magnetic resonance imaging 2017; 46: 589-594
  • 15 Nery F, Gordon I, Thomas DL. Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics 2018; 8: 2
  • 16 Notohamiprodjo M, Reiser MF, Sourbron SP. Diffusion and perfusion of the kidney. European journal of radiology 2010; 76: 337-347
  • 17 Notohamiprodjo M, Chandarana H, Mikheev A. et al. Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magnetic Resonance in Medicine 2015; 73: 1526-1532
  • 18 Ljimani A, Caroli A, Laustsen C. et al. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. Magn Reson Mater Phy 2020; 33: 177-195
  • 19 Caroli A, Schneider M, Friedli I. et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33: ii29-ii40
  • 20 Pruijm M, Milani B, Pivin E. et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney International 2018; 93: 932-940
  • 21 Ow CPC, Ngo JP, Ullah MM. et al. Renal hypoxia in kidney disease: cause or consequence?. Acta Physiologica 2018; 222: e12999
  • 22 Pruijm M, Mendichovszky IA, Liss P. et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant 2018; 33: ii22-ii28
  • 23 Bane O, Mendichovszky IA, Milani B. et al. Consensus-based technical recommendations for clinical translation of renal BOLD MRI. Magn Reson Mater Phy 2020; 33: 199-215
  • 24 Wolf M, Boer de A, Sharma K. et al. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2018; 33: ii41-ii50
  • 25 Dekkers IA, Boer de A, Sharma K. et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. Magn Reson Mater Phy 2020; 33: 163-176
  • 26 Berchtold L, Friedli I, Crowe LA. et al. Validation of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for kidney fibrosis detection: a cross-sectional study. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2020; 35: 937-945
  • 27 Friedli I, Crowe LA, Berchtold L. et al. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation. Scientific Reports 2016; 6: 30088
  • 28 Brittain JH, Hu BS, Wright GA. et al. Coronary angiography with magnetization-prepared T2 contrast. Magnetic Resonance in Medicine 1995; 33: 689-696
  • 29 Kim PK, Hong YJ, Im DJ. et al. Myocardial T1 and T2 mapping: techniques and clinical applications. Korean journal of radiology 2017; 18: 113-131
  • 30 Franke M, Baeßler B, Vechtel J. et al. Magnetic resonance T2 mapping and diffusion-weighted imaging for early detection of cystogenesis and response to therapy in a mouse model of polycystic kidney disease. Kidney International 2017; 92: 1544-1554
  • 31 Bokacheva L, Rusinek H, Zhang JL. et al Assessment of renal function with dynamic contrast-enhanced MR imaging. Magnetic Resonance Imaging Clinics of North America 2008; 16: 597-611 , viii
  • 32 Ljimani A, Wittsack H-J, Lanzman RS. Functional MRI in transplanted kidneys. Abdom Radiol 2018; 43: 2615-2624
  • 33 Lanzman RS, Notohamiprodjo M, Wittsack HJ. Funktionelle Magnetresonanztomographie der Nieren. Radiologe 2015; 55: 1077-1087
  • 34 Zhang JL, Lee VS. Renal perfusion imaging by MRI. Journal of magnetic resonance imaging: JMRI 2020; 52: 369-379
  • 35 Lange S, Mędrzycka-Dąbrowska W, Zorena K. et al. Nephrogenic Systemic Fibrosis as a Complication after Gadolinium-Containing Contrast Agents: A Rapid Review. International Journal of Environmental Research and Public Health 2021; 18: 3000
  • 36 Gulani V, Calamante F, Shellock FG. et al. Gadolinium deposition in the brain: summary of evidence and recommendations. The Lancet Neurology 2017; 16: 564-570
  • 37 Selby NM, Blankestijn PJ, Boor P. et al. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2018; 33: ii4-ii14
  • 38 Buchanan C, Mahmoud H, Cox E. et al. Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery. Clinical Kidney Journal 2020; 1: 8
  • 39 Boer de A, Harteveld AA, Stemkens B. et al. Multiparametric Renal MRI: An Intrasubject Test–Retest Repeatability Study. Journal of magnetic resonance imaging 2021; 53: 859-873
  • 40 Schutter R, Lantinga VA, Borra RJH. et al. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. Magnetic Resonance Materials in Physics, Biology and Medicine 2020; 33: 49-61
  • 41 Buchanan CE, Mahmoud H, Cox EF. et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transplant 2020; 35: 955-964
  • 42 Cox EF, Buchanan CE, Bradley CR. et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Frontiers in physiology 2017; 8: 696
  • 43 Lang ST, Guo J, Bruns A. et al. Multiparametric quantitative MRI for the detection of IgA nephropathy using tomoelastography, DWI, and BOLD imaging. Investigative radiology 2019; 54: 669-674
  • 44 MacAskill CJ, Erokwu BO, Markley M. et al. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results. Pediatric research 2021; 89: 157-162
  • 45 Zhang J, Zhang LJ. Functional MRI as a Tool for Evaluating Interstitial Fibrosis and Prognosis in Kidney Disease. Kidney Diseases 2020; 6: 7-12
  • 46 Kim J, Hong J, Park H. Prospects of deep learning for medical imaging. Precis Future Med 2018; 2: 37-52
  • 47 Litjens G, Kooi T, Bejnordi BE. et al. A survey on deep learning in medical image analysis. Medical image analysis 2017; 42: 60-88
  • 48 Bridging the gap between data and technology: building a shared database for machine learning applications in renal MRI. 2021 https://renalmri.org/action/26
  • 49 Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 2019; 29: 102-127
  • 50 Mazurowski MA, Buda M, Saha A. et al. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. Journal of magnetic resonance imaging: JMRI 2019; 49: 939-954
  • 51 Akçakaya M, Moeller S, Weingärtner S. et al. Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging. Magnetic Resonance in Medicine 2019; 81: 439-453
  • 52 Eo T, Jun Y, Kim T. et al. KIKI‐net: cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magnetic Resonance in Medicine 2018; 80: 2188-2201
  • 53 Golkov V, Dosovitskiy A, Sperl JI. et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE transactions on medical imaging 2016; 35: 1344-1351
  • 54 Hammernik K, Klatzer T, Kobler E. et al. Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine 2018; 79: 3055-3071
  • 55 Zhu B, Liu JZ, Cauley SF. et al. Image reconstruction by domain-transform manifold learning. Nature 2018; 555: 487-492
  • 56 Liu F, Samsonov A, Chen L. et al. SANTIS: sampling‐augmented neural network with incoherent structure for MR image reconstruction. Magnetic Resonance in Medicine 2019; 82: 1890-1904
  • 57 Chen F, Taviani V, Malkiel I. et al. Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 2018; 289: 366-373
  • 58 Küstner T, Fuin N, Hammernik K. et al. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Scientific Reports 2020; 10: 13710
  • 59 Küstner T, Liebgott A, Mauch L. et al. Automated reference-free detection of motion artifacts in magnetic resonance images. Magma (New York, N.Y.) 2018; 31: 243-256
  • 60 van Niekerk A, Meintjes E, van der Kouwe A. A wireless radio frequency triggered acquisition device (WRAD) for self-synchronised measurements of the rate of change of the MRI gradient vector field for motion tracking. IEEE transactions on medical imaging 2019; 38: 1610-1621
  • 61 Baselice F, Ferraioli G, Pascazio V. et al. Bayesian MRI denoising in complex domain. Magnetic resonance imaging 2017; 38: 112-122
  • 62 Phophalia A, Mitra SK. 3D MR image denoising using rough set and kernel PCA method. Magnetic resonance imaging 2017; 36: 135-145
  • 63 Zhang X, Xu Z, Jia N. et al. Denoising of 3D magnetic resonance images by using higher-order singular value decomposition. Medical image analysis 2015; 19: 75-86
  • 64 Chen Y, Christodoulou AG, Zhou Z. et al MRI super-resolution with GAN and 3D multi-level DenseNet: smaller, faster, and better. arXiv preprint arXiv:2003.01217 2020
  • 65 Ishida M, Nakayama R, Uno M. et al. Learning-based super-resolution technique significantly improves detection of coronary artery stenoses on 1.5 T whole-heart coronary MRA. Journal of Cardiovascular Magnetic Resonance 2014; 16: 1-2
  • 66 Shi J, Liu Q, Wang C. et al. Super-resolution reconstruction of MR image with a novel residual learning network algorithm. Physics in Medicine & Biology 2018; 63: 85011
  • 67 Jog A, Carass A, Roy S. et al. Random forest regression for magnetic resonance image synthesis. Medical image analysis 2017; 35: 475-488
  • 68 Keenan KE, Ainslie M, Barker AJ. et al. Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magnetic Resonance in Medicine 2018; 79: 48-61
  • 69 Deistung A, Schäfer A, Schweser F. et al. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength. Neuroimage 2013; 65: 299-314
  • 70 Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR in Biomedicine 2017; 30: e3569
  • 71 European Society of Radiology (ESR). Magnetic Resonance Fingerprinting-a promising new approach to obtain standardized imaging biomarkers from MRI. Insights into imaging 2015; 6: 163-165
  • 72 Zöllner FG, Šerifović-Trbalić A, Kabelitz G. et al. Image registration in dynamic renal MRI-current status and prospects. Magma (New York, N.Y.) 2020; 33: 33-48
  • 73 Zollner FG, Kocinski M, Hansen L. et al. Kidney Segmentation in Renal Magnetic Resonance Imaging – Current Status and Prospects. IEEE Access 2021; 9: 71577-71605
  • 74 Kline TL, Korfiatis P, Edwards ME. et al. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys. J Digit Imaging 2017; 30: 442-448
  • 75 Bevilacqua V, Brunetti A, Cascarano GD. et al. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images. BMC Med Inform Decis Mak 2019; 19: 244
  • 76 Haghighi M, Warfield SK, Kurugol S. Automatic renal segmentation in DCE-MRI using convolutional neural networks automatics. Proc IEEE Int Symp Biomed Imaging 2018; 2018: 1534-1537
  • 77 Bobo MF, Bao S, Huo Y. et al. Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation. Proceedings of SPIE--the International Society for Optical Engineering 2018; 10574
  • 78 O’Reilly JA, Tanpradit S, Puttasakul T. et al. Automatic segmentation of polycystic kidneys from magnetic resonance images using decision tree classification and snake algorithm. 2019 12th Biomedical Engineering International Conference (BMEiCON): IEEE. 2019
  • 79 Suarez-Ibarrola R, Hein S, Reis G. et al. Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World journal of urology 2019; 1-19 DOI: 10.1007/s00345-019-03000-5.
  • 80 van Booven DJ, Kuchakulla M, Pai R. et al. A Systematic Review of Artificial Intelligence in Prostate Cancer. Research and Reports in Urology 2021; 13: 31
  • 81 Shehata M, Khalifa F, Soliman A. et al. Computer-aided diagnostic system for early detection of acute renal transplant rejection using diffusion-weighted MRI. IEEE Transactions on Biomedical Engineering 2018; 66: 539-552
  • 82 Shehata M, Shalaby A, Switala AE. et al. A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results. Medical physics 2020; 47: 2427-2440
  • 83 Shehata M, Khalifa F, Soliman A. et al. A Promising Non-invasive CAD System for Kidney Function Assessment. In: Ourselin S, Joskowicz L, Sabuncu MR. et al. (eds). Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Cham: Springer International Publishing; 2016: 613-621
  • 84 Zhao Y, Chang M, Wang R. et al. Deep Learning Based on MRI for Differentiation of Low‐and High‐Grade in Low‐Stage Renal Cell Carcinoma. Journal of magnetic resonance imaging 2020; 52: 1542-1549
  • 85 Suarez-Ibarrola R, Hein S, Reis G. et al. Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World J Urol 2020; 38: 2329-2347
  • 86 Putz FJ, Erlmeier A, Wiesinger I. et al. Contrast-enhanced ultrasound (CEUS) in renal imaging at an interdisciplinary ultrasound centre: Possibilities of dynamic microvascularisation and perfusion. Clinical hemorheology and microcirculation 2017; 66: 293-302
  • 87 Lerchbaumer MH, Putz FJ, Rübenthaler J. et al. Contrast-enhanced ultrasound (CEUS) of cystic renal lesions in comparison to CT and MRI in a multicenter setting. Clinical hemorheology and microcirculation 2020; 75: 419-429
  • 88 Clevert DA, D’Anastasi M, Jung EM. Contrast-enhanced ultrasound and microcirculation: efficiency through dynamics--current developments. Clinical hemorheology and microcirculation 2013; 53: 171-186
  • 89 Spiesecke P, Münch F, Fischer T. et al. Multiparametric ultrasound findings in acute kidney failure due to rare renal cortical necrosis. Scientific Reports 2021; 11: 2060
  • 90 Gassert F, Schnitzer M, Kim SH. et al. Vergleich von Magnetresonanztomografie und kontrastverstärktem Ultraschall als diagnostische Optionen bei unklaren zystischen Nierenläsionen – Eine Kosteneffektivitätsanalyse. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 2021; 42: 411-417
  • 91 Thurman J, Gueler F. Recent advances in renal imaging. F1000Research 2018; 7 DOI: 10.12688/f1000research.16188.1.
  • 92 Fried JG, Morgan MA. Renal Imaging: Core Curriculum 2019. American journal of kidney diseases: the official journal of the National Kidney Foundation 2019; 73: 552-565
  • 93 Saini S, Seltzer SE, Bramson RT. et al. Technical cost of radiologic examinations: analysis across imaging modalities. Radiology 2000; 216: 269-272
  • 94 Bierig SM, Jones A. Accuracy and Cost Comparison of Ultrasound Versus Alternative Imaging Modalities, Including CT, MR, PET, and Angiography. Journal of Diagnostic Medical Sonography 2009; 25: 138-144
  • 95 Davenport MS, Khalatbari S, Dillman JR. et al. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology 2013; 267: 94-105