RSS-Feed abonnieren

DOI: 10.1055/a-1791-9358
Reduced Steroid Synthesis in the Follicular Fluid of MTHFR 677TT Mutation Carriers: Effects of Increased Folic Acid Administration
Verminderte Steroidsynthese in der Follikelflüssigkeit von MTHFR-677TT-Mutations-Trägerinnen: Auswirkungen einer höheren FolsäuregabeGefördert durch: Applied Biosystems, Foster City, CA
Gefördert durch: NIH NIH GCRC grant # 5-MO1-RR-13297-S1
Gefördert durch: Office of Research on Women's Health 5U10HD047890-03
Gefördert durch: Obstetrics and Pharmacology Research Unit
Gefördert durch: NIH/NICHD 5U10HD047890-03
Gefördert durch: National Institute of Child Health and Development, Bethesda, MD 1 U10HD45993-02

Abstract
Objective To compare steroid profiles in the follicular fluid (FF) from women homozygous for the methylenetetrahydrofolate reductase (MTHFR) 677C>T mutation and wildtype controls and to correlate it with the folic acid administration scheme applied at the time of oocyte retrieval.
Design Retrospective single center study.
Subjects and Methods Infertile patients treated by using assisted reproductive techniques were genotyped routinely for the MTHFR 677C>T mutation. In 2006 they had received folic acid supplementation doses of 400 µg daily per os. This group was designated Group-400 (n = 10). From 2008 onwards, all of our infertility patients received a daily dose of 800 µg folic acid per os. Women from this group were designated Group-800 (n = 28). FF were collected and a panel of steroid hormones (estradiol, estrone, estriol, cortisol, progesterone, 17-OH progesterone, testosterone, androstenedione, aldosterone, DHEA, and DHEA-S) was measured by isotope dilution liquid chromatography-tandem mass spectrometry employing atmospheric pressure photo ionization (APPI).
Results In Group-400, the FF hormone profile confirmed a significant reduction of estradiol in homozygous 677TT carriers (0.52 ± 0.08-fold, exact p = 0.032) and for the first time also revealed significantly reduced estriol concentrations in these individuals (0.54 ± 0.05-fold, p = 0.016), as compared to wildtype controls. In Group-800, no significant differences were found for concentrations of any of the steroid hormones between homozygous 677TT carriers and wildtype controls.
Conclusions The current findings support and extend previous reports on reduced concentrations of specific steroid hormones in follicular fluids of homozygous MTHFR 677C>T mutation carriers. The restoration of the FF hormone profile by elevated-dose folic acid supplementation might impact performing ART in infertile women with the MTHFR 677TT-genotype. Further adequately powered studies are necessary to verify our finding and to demonstrate the clinical effect of enhanced folic supplementation on ovarian function.
Zusammenfassung
Ziel Ziel dieser Studie war es, das Steroidprofil der Follikelflüssigkeit (FF) von Frauen mit Homozygotie für die Methylentetrahydrofolat-Reduktase-(MTHFR-)677C>T-Mutation mit dem Steroidprofil einer Wildtyp-Kontrollgruppe zu vergleichen und danach das Steroidprofil mit dem Folsäure-Dosierungsschema, welches zum Zeitpunkt der Eizellentnahme eingesetzt wurde, zu korrelieren.
Studiendesign Retrospektive monozentrische Studie.
Subjekte und Methoden Unfruchtbare Patientinnen, die sich einer assistierten Reproduktionstherapie unterzogen, erhielten routinemäßig eine Genotypisierung für die MTHFR-677C>T-Mutation. In 2006 wurden solche Patientinnen täglich mit 400 µg Folsäure oral supplementiert. Diese erste Gruppe wurde Gruppe-400 (n = 10) genannt. Ab 2008 erhielten alle unfruchtbare Patientinnen täglich eine orale Dosis von 800 µg Folsäure. Diese Gruppe wurde Gruppe-800 (n = 28) genannt. Bei beiden Gruppen wurden FF-Proben gesammelt und damit ein Hormonprofil der folgenden Steroidhormone (Östradiol, Östron, Östriol, Cortisol, Progesteron, 17-OH-Progesteron, Testosteron, Androstendion, Aldosteron, DHEA und DHEA-S) erstellt. Zur Messung wurde die Isotopenverdünnungs-Flüssigchromatografie gekoppelt mit Tandemmassenspektrometrie und atmosphärischer Photoionisation (APPI) eingesetzt.
Ergebnisse In der Gruppe-400 bestätigte das FF-Hormonprofil eine erhebliche Senkung des Östradiols bei homozygoten 677TT-Trägerinnen (0,52 ± 0,08-fach, exakt p = 0,032); es fanden sich auch zum ersten Mal erheblich verminderte Konzentrationen von Östriol bei diesen Frauen (0,54 ± 0,05-fach, p = 0,016) im Vergleich zur Wildtyp-Kontrollgruppe. In der Gruppe-800 gab es keine signifikanten Unterschiede bei den Konzentrationen der Steroidhormone zwischen homozygoten 677TT-Trägerinnen und der Wildtyp-Kontrollgruppe.
Schlussfolgerungen Die aktuellen Ergebnisse bestätigen und erweitern frühere Meldungen über verringerte Konzentrationen von bestimmten Steroidhormonen in der Follikelflüssigkeit von homozygoten MTHFR-677C>T-Mutations-Trägerinnen. Die Wiederherstellung des FF-Hormonprofils durch eine hochdosierte Supplementierung mit Folsäure könnte eine Auswirkung auf die Durchführung von ART bei unfruchtbaren Frauen mit dem MTHFR-677TT-Genotyp haben. Weitere adäquat gepowerte Studien werden benötigt, um unsere Ergebnisse zu bestätigen und die klinischen Auswirkungen einer höheren Supplementierung mit Folsäure auf die ovarielle Funktion zu zeigen.
Schlüsselwörter
MTHFR-677C>T-Mutation - Infertilität - weibliche Reproduktionssteroide - ovarielle Follikelflüssigkeit - LC-MS/MS-AnalyseKeywords
MTHFR 677C>T mutation - infertility - female reproductive steroids - ovarian follicular fluid - LC-MS/MS analysisPublikationsverlauf
Eingereicht: 27. April 2022
Angenommen nach Revision: 24. Juli 2022
Artikel online veröffentlicht:
30. September 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chavarro JE, Rich-Edwards JW, Rosner BA. et al. Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. Fertil Steril 2008; 89: 668-676
- 2 Haggarty P, McCallum H, McBain H. et al. Effect of B vitamins and genetics on success of in-vitro fertilisation: prospective cohort study. Lancet 2006; 367: 1513-1519
- 3 Thaler CJ. Folate Metabolism and human reproduction. Geburtshilfe Frauenheilkd 2014; 74: 845-851
- 4 Frosst P, Blom HJ, Milos R. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111-113
- 5 Kang SS, Zhou J, Wong PW. et al. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988; 43: 414-421
- 6 McAndrew PE, Brandt JT, Pearl DK. et al. The incidence of the gene for thermolabile methylene tetrahydrofolate reductase in African Americans. Thromb Res 1996; 83: 195-198
- 7 Jacques PF, Bostom AG, Williams RR. et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996; 93: 7-9
- 8 Harmon DL, Woodside JV, Yarnell JW. et al. The common 'thermolabile' variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 1996; 89: 571-577
- 9 Girelli D, Friso S, Trabetti E. et al. Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: evidence for an important genetic-environmental interaction. Blood 1998; 91: 4158-4163
- 10 Taguchi T, Mori H, Hamada A. et al. Serum folate, total homocysteine levels and methylenetetrahydrofolate reductase 677C>T polymorphism in young healthy female Japanese. Asia Pac J Clin Nutr 2012; 21: 291-295
- 11 Yaliwal LV, Desai RM. Methylenetetrahydrofolate reductase mutations, a genetic cause for familial recurrent neural tube defects. Indian J Hum Genet 2012; 18: 122-124
- 12 Zhang T, Lou J, Zhong R. et al. Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature. PLoS One 2013; 8: e59570
- 13 Rosenquist TH. Folate, homocysteine and the cardiac neural crest. Dev Dyn 2013; 242: 201-218
- 14 Xuan C, Li H, Zhao JX. et al. Association between MTHFR polymorphisms and congenital heart disease: a meta-analysis based on 9,329 cases and 15,076 controls. Sci Rep 2014; 4: 7311
- 15 Du B, Shi X, Yin C. et al. Polymorphisms of methalenetetrahydrofolate reductase in recurrent pregnancy loss: an overview of systematic reviews and meta-analyses. J Assist Reprod Genet 2019; 36: 1315-1328
- 16 Wang G, Lin Z, Wang X. et al. The association between 5, 10 – methylenetetrahydrofolate reductase and the risk of unexplained recurrent pregnancy loss in China: A Meta-analysis. Medicine (Baltimore) 2021; 100: e25487
- 17 Blue GM, Kirk EP, Sholler GF. et al. Congenital heart disease: current knowledge about causes and inheritance. Med J Aust 2012; 197: 155-159
- 18 Blencowe H, Cousens S, Modell B. et al. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol 2010; 39 (Suppl. 01) i110-i121
- 19 Quere I, Mercier E, Bellet H. et al. Vitamin supplementation and pregnancy outcome in women with recurrent early pregnancy loss and hyperhomocysteinemia. Fertil Steril 2001; 75: 823-825
- 20 Serapinas D, Boreikaite E, Bartkeviciute A. et al. The importance of folate, vitamins B6 and B12 for the lowering of homocysteine concentrations for patients with recurrent pregnancy loss and MTHFR mutations. Reprod Toxicol 2017; 72: 159-163
- 21 Thaler CJ, Budiman H, Ruebsamen H. et al. Effects of the common 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness to recombinant follicle-stimulating hormone. Am J Reprod Immunol 2006; 55: 251-258
- 22 Hecht S, Pavlik R, Lohse P. et al. Common 677C-->T mutation of the 5,10-methylenetetrahydrofolate reductase gene affects follicular estradiol synthesis. Fertil Steril 2009; 91: 56-61
- 23 Plaino L, Stomati M, Casarosa E. et al. Ovarian follicular fluid contains immunoreactive estriol: lack of correlation with estradiol concentrations. Gynecol Endocrinol 2000; 14: 231-235
- 24 Rosen MP, Shen S, McCulloch CE. et al. Methylenetetrahydrofolate reductase (MTHFR) is associated with ovarian follicular activity. Fertil Steril 2007; 88: 632-638
- 25 Nelen WL, Blom HJ, Thomas CM. et al. Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J Nutr 1998; 128: 1336-1341
- 26 Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR Recomm Rep [Anonym]. 1992; 41: 1-7
- 27 Koren G, Goh I. Increasing folate supplementation for selected groups of Canadian women. J Obstet Gynaecol Can 2007; 29: 992-996
- 28 Wilson RD, Johnson JA, Wyatt P. et al. Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can 2007; 29: 1003-1026
- 29 Canfield MA, Anderson JL, Waller DK. et al. Folic acid awareness and use among women with a history of a neural tube defect pregnancy--Texas, 2000–2001. MMWR Recomm Rep 2002; 51: 16-19
- 30 Rosenberg KD, Gelow JM, Sandoval AP. Pregnancy intendedness and the use of periconceptional folic acid. Pediatrics 2003; 111: 1142-1145
- 31 Acharya U, Small J, Randall J. et al. Prospective study of short and long regimens of gonadotropin-releasing hormone agonist in in vitro fertilization program. Fertil Steril 1992; 57: 815-818
- 32 Guo T, Gu J, Soldin OP. et al. Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization. Clin Biochem 2008; 41: 736-741
- 33 Guo T, Taylor RL, Singh RJ. et al. Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin Chim Acta 2006; 372: 76-82
- 34 Lai WK, Kan MY. Homocysteine-Induced Endothelial Dysfunction. Ann Nutr Metab 2015; 67: 1-12
- 35 Koch HG, Goebeler M, Marquardt T. et al. The redox status of aminothiols as a clue to homocysteine-induced vascular damage?. Eur J Pediatr 1998; 157 (Suppl. 02) S102-S106
- 36 Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol 2018; 218: 379-389
- 37 Gaskins AJ, Mumford SL, Chavarro JE. et al. The impact of dietary folate intake on reproductive function in premenopausal women: a prospective cohort study. PLoS One 2012; 7: e46276
- 38 Kadir M, Hood RB, Minguez-Alarcon L. et al. Folate intake and ovarian reserve among women attending a fertility center. Fertil Steril 2022; 117: 171-180
- 39 Gaskins AJ, Afeiche MC, Wright DL. et al. Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet Gynecol 2014; 124: 801-809
- 40 Soldin SJ, Soldin OP. Steroid hormone analysis by tandem mass spectrometry. Clin Chem 2009; 55: 1061-1066