Ultraschall Med 2022; 43(04): 354-366
DOI: 10.1055/a-1816-8548
Guidelines & Recommendations

Point-of-Care Ultrasound in Neurology – Report of the EAN SPN/ESNCH/ERcNsono Neuro-POCUS Working Group

Point-of-Care-Ultraschall in der Neurologie – Bericht der EAN SPN/ESNCH/ERcNsono Neuro-POCUS Arbeitsgruppe
Jurgita Valaikiene
1   Center of Neurology, Clinic of Neurology and Neurosurgery, Vilnius University Faculty of Medicine, Vilnius, Lithuania
,
Felix Schlachetzki
2   Department of Neurology, Center for Vascular Neurology and Intensive Care, medbo Bezirksklinikum Regensburg, University of Regensburg, Germany
,
Elsa Azevedo
3   Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal
,
Manfred Kaps
4   Neurology, Justus Liebig University Giessen Faculty of Medicine, Giessen, Germany
,
Piergiorgio Lochner
5   Department of Neurology, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
,
Aristeidis H. Katsanos
6   Division of Neurology, Population Health Research Institute, McMaster University, Hamilton, Canada
,
Uwe Walter
7   Department of Neurology, Rostock University Medical Center, Rostock, Germany
,
Claudio Baracchini
8   Stroke Unit and Neurosonology Laboratory, Padua University Hospital, Padova, Italy
,
Eva Bartels
9   Neurology, Center for Neurological Vascular Diagnostics, Munich, Germany
,
10   Center for Health Research, University of Ostrava Faculty of Medicine, Ostrava, Czech Republic
› Author Affiliations

Abstract

In the last decade, ultrasound examination in neurology has been undergoing a significant expansion of its modalities. In parallel, there is an increasing demand for rapid and high-quality diagnostics in various acute diseases in the prehospital setting, the emergency room, intensive care unit, and during surgical or interventional procedures. Due to the growing need for rapid answers to clinical questions, there is particular demand for diagnostic ultrasound imaging. The Neuro-POCUS working group, a joint project by the European Academy of Neurology Scientific Panel Neurosonology, the European Society of Neurosonology and Cerebral Hemodynamics, and the European Reference Centers in Neurosonology (EAN SPN/ESNCH/ERcNsono Neuro-POCUS working group), was given the task of creating a concept for point-of-care ultrasound in neurology called “Neuro-POCUS”. We introduce here a new ultrasound examination concept called point-of-care ultrasound in neurology (Neuro-POCUS) designed to streamline conclusive imaging outside of the ultrasound center, directly at the bedside. The aim of this study is to encourage neurologists to add quick and disease-oriented Neuro-POCUS to accompany the patient in the critical phase as an adjunct not a substitution for computed tomography, magnetic resonance imaging, or standard comprehensive neurosonology examination. Another goal is to avoid unwanted complications during imaging-free periods, ultimately resulting in advantages for the patient.

Zusammenfassung

Im letzten Jahrzehnt hat die Ultraschalldiagnostik in der Neurologie eine deutliche Ausweitung ihrer Modalitäten erfahren. Parallel dazu steigt der Bedarf an schneller und qualitativ hochwertiger Diagnostik bei verschiedenen akuten Erkrankungen sowohl im prähospitalen Umfeld, in der Notaufnahme, auf der Intensivstation und bei chirurgischen oder interventionellen Eingriffen. Die Neuro-POCUS Working Group, eine gemeinsame Aktivität des European Academy of Neurology Scientific Panel Neurosolonogy, der European Society of Neurosonology and Cerebral Hemodynamics und der European Reference Centers in Neurosonology (EAN SPN/ESNCH/ERcNsono Neuro-POCUS Working Group) hat sich zum Ziel gesetzt, ein Konzept des Point-of-Care-Ultraschalls in der Neurologie mit dem Namen „Neuro-POCUS“ zu erstellen. Die bildgebende Diagnostik wird durch den wachsenden Bedarf an schnellen Antworten auf klinische Fragen besonders herausgefordert. Wir stellen hier ein neues Konzept der Ultraschalluntersuchung vor, den sogenannten Point-of-Care-Ultraschall in der Neurologie (Neuro-POCUS), der eine aussagekräftige Diagnostik fernab des Ultraschalllabors direkt am Krankenbett ermöglichen soll. Ziel dieser Arbeit ist es, Neurologen zu ermutigen, den Patienten in der kritischen Phase mit einem schnellen und krankheitsorientierten Neuro-POCUS zu begleiten und nicht als Ersatz für die Computertomographie, die Magnetresonanztomographie oder die umfassende neurosonologische Standarduntersuchung zu dienen. Ein weiteres Ziel besteht darin, unerwünschte Komplikationen innerhalb bildgebungsfreier Zeiträume zu vermeiden und das outcome des Patienten Vorteile zu verbessern.



Publication History

Received: 27 June 2021

Accepted: 17 March 2022

Article published online:
05 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Walter U, Školoudík D. Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies. Ultraschall in Med 2014; 35 (04) 322-331
  • 2 Castro P, Serrador JM, Rocha I. et al. Efficacy of Cerebral Autoregulation in Early Ischemic Stroke Predicts Smaller Infarcts and Better Outcome. Front Neurol 2017; 8: 113
  • 3 Camps-Renom P, Prats-Sánchez L, Casoni F. et al. Plaque neovascularization detected with contrast-enhanced ultrasound predicts ischaemic stroke recurrence in patients with carotid atherosclerosis. Eur J Neurol 2020; 27 (05) 809-816
  • 4 Cires-Drouet RS, Mozafarian M, Ali A. et al. Imaging of high-risk carotid plaques: ultrasound. Semin Vasc Surg 2017; 30 (01) 44-53
  • 5 Schlachetzki F, Nedelmann M, Poppert H. et al. Neurosonological Diagnosis in the Acute Phase of Stroke is a Sign of Qualified Care. Akt Neurol 2017; 1: 182-188
  • 6 Herzberg M, Boy S, Holscher T. et al. Prehospital stroke diagnostics based on neurological examination and transcranial ultrasound. Crit Ultrasound J 2014; 6 (01) 3
  • 7 Dietrich CF, Goudie A, Chiorean L. et al. Point of Care Ultrasound: A WFUMB Position Paper. Ultrasound Med Biol 2017; 43 (01) 49-58
  • 8 Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med 2011; 364: 749-757
  • 9 Park JS, Cho Y, You Y. et al. Optimal timing to measure optic nerve sheath diameter as a prognostic predictor in post-cardiac arrest patients treated with targeted temperature management. Resuscitation 2019; 143: 173-179
  • 10 Holscher T, Schlachetzki F, Zimmermann M. et al. Transcranial ultrasound from diagnosis to early stroke treatment. 1. Feasibility of prehospital cerebrovascular assessment. Cerebrovasc Dis 2008; 26 (06) 659-663
  • 11 Lin MP, Sanossian N, Liebeskind DS. Imaging of prehospital stroke therapeutics. Expert Rev Cardiovasc Ther 2015; 13 (09) 1001-1015
  • 12 Robba C, Taccone FS. How I use Transcranial Doppler. Crit Care 2019; 23 (01) 420
  • 13 Harrer JU, Eyding J, Ritter M. et al. The potential of neurosonography in neurological emergency and intensive care medicine: monitoring of increased intracranial pressure, brain death diagnostics, and cerebral autoregulation- part 2. Ultraschall in Med 2012; 33 (04) 320-331
  • 14 Harrer JU, Eyding J, Ritter M. et al. [The potential of neurosonography in neurological emergency and intensive care medicine: basic principles, vascular stroke diagnostics, and monitoring of stroke-specific therapy – Part 1]. Ultraschall in Med 2012; 33 (03) 218-232
  • 15 Siepen BM, Grubwinkler S, Wagner A. et al. Neuromonitoring Using Neurosonography and Pupillometry in A Weaning and Early Neurorehabilitation Unit. J Neuroimaging 2020; 30 (05) 631-639
  • 16 Robba C, Pozzebon S, Moro B. et al. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care 2020; 24 (01) 379
  • 17 Rubin MN, Barrett KM, Freeman WD. et al. Teleneurosonology: a novel application of transcranial and carotid ultrasound. J Stroke Cerebrovasc Dis 2015; 24 (03) 562-565
  • 18 Mikulik R, Alexandrov AV, Ribo M. et al. Telemedicine-guided carotid and transcranial ultrasound: a pilot feasibility study. Stroke 2006; 37 (01) 229-230
  • 19 Chernyshev OY, Garami Z, Calleja S. et al. Yield and accuracy of urgent combined carotid/transcranial ultrasound testing in acute cerebral ischemia. Stroke 2005; 36 (01) 32-37
  • 20 Ertl M, Altmann M, Torka E. et al. The retrobulbar “spot sign” as a discriminator between vasculitic and thrombo-embolic affections of the retinal blood supply. Ultraschall in Med 2012; 33 (07) E263-E267
  • 21 Ospel JM, Marko M, Singh N. et al. Prevalence of Non-Stenotic (<50 %) Carotid Plaques in Acute Ischemic Stroke and Transient Ischemic Attack: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2020; 29 (10) 105117
  • 22 Allendoerfer J, Goertler M, von Reutern GM. et al. Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol 2006; 5 (10) 835-840
  • 23 Montrief T, Alerhand S, Jewell C. et al. Incorporation of Transcranial Doppler into the ED for the neurocritical care patient. Am J Emerg Med 2019; 37 (06) 1144-1152
  • 24 Robba C, Cardim D, Tajsic T. et al. Non-invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. Acta Neurochir Suppl 2018; 126: 69-73
  • 25 Wijntjes J, Borchert A, van Alfen N. Nerve Ultrasound in Traumatic and Iatrogenic Peripheral Nerve Injury. Diagnostics (Basel) 2020; 11 (01) 30
  • 26 Finnsdottir H, Szegedi I, Olah L. et al. The applications of transcranial Doppler in ischemic stroke. Ideggyogy Sz 2020; 73 (11) 367-378
  • 27 Traenka C, Streifler J, Lyrer P. et al. Clinical Usefulness of Serial Duplex Ultrasound in Cervical Artery Dissection Patients. Cerebrovasc Dis 2020; 49 (02) 206-215
  • 28 Mazya MV, Ahmed N, Azevedo E. et al. Impact of Transcranial Doppler Ultrasound on Logistics and Outcomes in Stroke Thrombolysis: Results From the SITS-ISTR. Stroke 2018; 49 (07) 1695-1700
  • 29 Baracchini C, Farina F, Palmieri A. et al. Early hemodynamic predictors of good outcome and reperfusion injury after endovascular treatment. Neurology 2019; 92 (24) e2774-e2783
  • 30 Kneihsl M, Niederkorn K, Deutschmann H. et al. Abnormal Blood Flow on Transcranial Duplex Sonography Predicts Poor Outcome After Stroke Thrombectomy. Stroke 2018; 49 (11) 2780-2782
  • 31 Collins CI, Hasan TF, Mooney LH. et al. Subarachnoid Hemorrhage “Fast Track”: A Health Economics and Health Care Redesign Approach for Early Selected Hospital Discharge. Mayo Clin Proc Innov Qual Outcomes 2020; 4 (03) 238-248
  • 32 Rynkowski CB, de Oliveira Manoel AL, Dos Reis MM. et al. Early Transcranial Doppler Evaluation of Cerebral Autoregulation Independently Predicts Functional Outcome After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2019; 31 (02) 253-262
  • 33 Takahashi S, Kokudai Y, Kurokawa S. et al. Prognostic evaluation of branch atheromatous disease in the pons using carotid artery ultrasonography. J Stroke Cerebrovasc Dis 2020; 29 (07) 104852
  • 34 Robba C, Cardim D, Sekhon M. et al. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res 2018; 96 (04) 720-730
  • 35 Chang JJ, Tsivgoulis G, Katsanos AH. et al. Diagnostic Accuracy of Transcranial Doppler for Brain Death Confirmation: Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2016; 37 (03) 408-414
  • 36 Pedicelli A, Bartocci M, Lozupone E. et al. The role of cervical color Doppler ultrasound in the diagnosis of brain death. Neuroradiology 2019; 61 (02) 137-145
  • 37 Faraglia V, Palombo G, Stella N. et al. Cerebral embolization in patients undergoing protected carotid-artery stenting and carotid surgery. J Cardiovasc Surg (Torino) 2007; 48 (06) 683-688
  • 38 Martin KK, Wigginton JB, Babikian VL. et al. Intraoperative cerebral high-intensity transient signals and postoperative cognitive function: a systematic review. Am J Surg 2009; 197 (01) 55-63
  • 39 von Bary C, Deneke T, Arentz T. et al. Online Measurement of Microembolic Signal Burden by Transcranial Doppler during Catheter Ablation for Atrial Fibrillation-Results of a Multicenter Trial. Front Neurol 2017; 8: 131
  • 40 Silbert BS, Evered LA, Scott DA. et al. Review of transcranial Doppler ultrasound to detect microemboli during orthopedic surgery. AJNR Am J Neuroradiol 2014; 35 (10) 1858-1863
  • 41 Mints G, Bai J, Wong T. Ultrasound-Guided Lumbar Puncture. J Ultrasound Med 2020; 39 (01) 203
  • 42 Azarpazhooh MR, Chambers BR. Clinical application of transcranial Doppler monitoring for embolic signals. J Clin Neurosci 2006; 13 (08) 799-810
  • 43 Powers J, Averkiou M. Principles of cerebral ultrasound contrast imaging. Front Neurol Neurosci 2015; 36: 1-10
  • 44 Connolly F, Rohl JE, Guthke C. et al. Emergency Room Use of “Fast-Track” Ultrasound in Acute Stroke: An Observational Study. Ultrasound Med Biol 2019; 45 (05) 1103-1111
  • 45 Bonow RH, Young CC, Bass DI. et al. Transcranial Doppler ultrasonography in neurological surgery and neurocritical care. Neurosurg Focus 2019; 47 (06) E2
  • 46 Baracchini C, Pieroni A, Kneihsl M. et al. Practice recommendations for neurovascular ultrasound investigations of acute stroke patients in the setting of the COVID-19 pandemic: an expert consensus from the European Society of Neurosonology and Cerebral Hemodynamics. Eur J Neurol 2020; 27 (09) 1776-1780
  • 47 Li L, Yong RJ, Kaye AD. et al. Perioperative Point of Care Ultrasound (POCUS) for Anesthesiologists: an Overview. Curr Pain Headache Rep 2020; 24 (05) 20
  • 48 Vandemergel X. Point-of-care ultrasound (POCUS) for hospitalists and general internists. Acta Clin Belg 2021; 76 (03) 197-203
  • 49 Gomez JR, Hobbs KS, Johnson LL. et al. The Clinical Contribution of Neurovascular Ultrasonography in Acute Ischemic Stroke. J Neuroimaging 2020 30 (06) 867-874
  • 50 Skoloudik D, Mijajlovic M. Neurosonology during the COVID-19 pandemic (Editorial commentary from the chairs of the ultrasound panel of the European Academy of Neurology). Eur J Neurol 2020; 27 (09) 1774-1775
  • 51 Zeiler FA, Czosnyka M, Smielewski P. Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology. Acta Neurochir (Wien) 2018; 160 (11) 2149-2157
  • 52 Best LM, Webb AC, Gurusamy KS. et al. Transcranial Doppler Ultrasound Detection of Microemboli as a Predictor of Cerebral Events in Patients with Symptomatic and Asymptomatic Carotid Disease: A Systematic Review and Meta-Analysis. Eur J Vasc Endovasc Surg 2016; 52 (05) 565-580
  • 53 Farina F, Palmieri A, Favaretto S. et al. Prognostic Role of Microembolic Signals After Endovascular Treatment in Anterior Circulation Ischemic Stroke Patients. World Neurosurg 2018; 110: e882-e889
  • 54 Antipova D, Eadie L, Macaden AS. et al. Diagnostic value of transcranial ultrasonography for selecting subjects with large vessel occlusion: a systematic review. Ultrasound J 2019; 11 (01) 29
  • 55 Harrer JU, Valaikiene J, Koch H. et al. Transcranial perfusion sonography using a low mechanical index and pulse inversion harmonic imaging: reliability, inter-/intraobserver variability. Ultraschall in Med 2011; 32 (Suppl. 01) S95-S101
  • 56 Biswas M, Kuppili V, Saba L. et al. Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk. Med Biol Eng Comput 2019; 57 (02) 543-564
  • 57 Skoloudik D, Walter U. Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol 2010; 90: 7-34
  • 58 Ohm C, Bendick PJ, Monash J. et al. Diagnosis of total internal carotid occlusions with duplex ultrasound and ultrasound contrast. Vasc Endovascular Surg 2005; 39 (03) 237-243
  • 59 Ertl M, Barinka F, Torka E. et al. Ocular color-coded sonography – a promising tool for neurologists and intensive care physicians. Ultraschall in Med 2014; 35 (05) 422-431
  • 60 Castro P, Azevedo E, Serrador J. et al. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: Link to cerebral autoregulation. J Neurol Sci 2017; 372: 256-261
  • 61 Hakimi R, Alexandrov AV, Garami Z. Neuro-ultrasonography. Neurol Clin 2020; 38 (01) 215-229
  • 62 Wessels T, Mosso M, Krings T. et al. Extracranial and intracranial vertebral artery dissection: long-term clinical and duplex sonographic follow-up. J Clin Ultrasound 2008; 36 (08) 472-479
  • 63 Sharma S, Lubrica RJ, Song M. et al. The Role of Transcranial Doppler in Cerebral Vasospasm: A Literature Review. Acta Neurochir Suppl 2020; 127: 201-205
  • 64 Meyer-Wiethe K, Sallustio F, Kern R. Diagnosis of intracerebral hemorrhage with transcranial ultrasound. Cerebrovasc Dis 2009; 27 (Suppl. 02) 40-47
  • 65 Camps-Renom P, Mendez J, Granell E. et al. Transcranial Duplex Sonography Predicts Outcome following an Intracerebral Hemorrhage. AJNR Am J Neuroradiol 2017; 38 (08) 1543-1549
  • 66 Ovesen C, Christensen AF, Krieger DW. et al. Time course of early postadmission hematoma expansion in spontaneous intracerebral hemorrhage. Stroke 2014; 45 (04) 994-999
  • 67 Spence JD. Transcranial Doppler monitoring for microemboli: a marker of a high-risk carotid plaque. Semin Vasc Surg 2017; 30 (01) 62-66
  • 68 Sheriff F, Diz-Lopes M, Khawaja A. et al. Microemboli After Successful Thrombectomy Do Not Affect Outcome but Predict New Embolic Events. Stroke 2020; 51 (01) 154-161
  • 69 Baracchini C, Farina F, Pieroni A. et al. Ultrasound Identification of Patients at Increased Risk of Intracranial Hemorrhage After Successful Endovascular Recanalization for Acute Ischemic Stroke. World Neurosurg 2019; 125: e849-e855
  • 70 Kneihsl M, Niederkorn K, Deutschmann H. et al. Increased middle cerebral artery mean blood flow velocity index after stroke thrombectomy indicates increased risk for intracranial hemorrhage. J Neurointerv Surg 2018; 10 (09) 882-887
  • 71 Kwiatkowski JL, Voeks JH, Kanter J. et al. Ischemic stroke in children and young adults with sickle cell disease in the post-STOP era. Am J Hematol 2019; 94 (12) 1335-1343
  • 72 Bonow RH, Witt CE, Mosher BP. et al. Transcranial Doppler Microemboli Monitoring for Stroke Risk Stratification in Blunt Cerebrovascular Injury. Crit Care Med 2017; 45 (10) e1011-e1017
  • 73 Kermer P, Wellmer A, Crome O. et al. Transcranial color-coded duplex sonography in suspected acute basilar artery occlusion. Ultrasound Med Biol 2006; 32 (03) 315-320
  • 74 Demchuk AM, Christou I, Wein TH. et al. Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 2000; 10 (01) 1-12
  • 75 Kargiotis O, Safouris A, Magoufis G. et al. Transcranial Color-Coded Duplex in Acute Encephalitis: Current Status and Future Prospects. J Neuroimaging 2016; 26 (04) 377-382
  • 76 Tai MS, Sharma VK. Role of Transcranial Doppler in the Evaluation of Vasculopathy in Tuberculous Meningitis. PLoS One 2016; 11 (10) e0164266
  • 77 Ebraheim AM, Mourad HS, Kishk NA. et al. Sonographic assessment of optic nerve and ophthalmic vessels in patients with idiopathic intracranial hypertension. Neurol Res 2018; 40 (09) 728-735
  • 78 Pradeep R, Gupta D, Shetty N. et al. Transcranial Doppler for Monitoring and Evaluation of Idiopathic Intracranial Hypertension. J Neurosci Rural Pract 2020; 11 (02) 309-314
  • 79 Harris S, Rasyid A. Objective Diagnosis of Migraine without Aura with Migraine Vascular Index: A Novel Formula to Assess Vasomotor Reactivity. Ultrasound Med Biol 2020; 46 (06) 1359-1364
  • 80 Shayestagul NA, Christensen CE, Amin FM. et al. Measurement of Blood Flow Velocity in the Middle Cerebral Artery During Spontaneous Migraine Attacks: A Systematic Review. Headache 2017; 57 (06) 852-861
  • 81 Lee MJ, Cho S, Woo SY. et al. Paradoxical association between age and cerebrovascular reactivity in migraine: A cross-sectional study. J Neurol Sci 2019; 398: 204-209
  • 82 Sebastian A, Coath F, Innes S. et al. Role of the halo sign in the assessment of giant cell arteritis: a systematic review and meta-analysis. Rheumatol Adv Pract 2021; 5 (03) rkab059
  • 83 Katsanos AH, Psaltopoulou T, Sergentanis TN. et al. Transcranial Doppler versus transthoracic echocardiography for the detection of patent foramen ovale in patients with cryptogenic cerebral ischemia: A systematic review and diagnostic test accuracy meta-analysis. Ann Neurol 2016; 79 (04) 625-635
  • 84 Jauss M, Zanette E. Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis 2000; 10 (06) 490-496
  • 85 Park S, Oh JK, Song JK. et al. Transcranial Doppler as a Screening Tool for High-Risk Patent Foramen Ovale in Cryptogenic Stroke. J Neuroimaging 2021; 31 (01) 165-170
  • 86 Gevorgyan FlemingR, Kumar P, West B. et al. Comparison of residual shunt rate and complications across 6 different closure devices for patent foramen ovale. Catheter Cardiovasc Interv 2020; 95 (03) 365-372
  • 87 Milev I, Zafirovska P, Zimbakov Z. et al. Transcatheter Closure of Patent Foramen Ovale: A Single Center Experience. Open Access Maced J Med Sci 2016; 4 (04) 613-618
  • 88 Kobkitsuksakul C, Soratcha W, Chanthanaphak E. Value of external carotid artery resistive index for diagnosis of cavernous sinus dural arteriovenous fistula and determination of malignant type. Clin Imaging 2018; 49: 117-120
  • 89 Tsai LK, Yeh SJ, Chen YC. et al. Screen for intracranial dural arteriovenous fistulae with carotid duplex sonography. J Neurol Neurosurg Psychiatry 2009; 80 (11) 1225-1229
  • 90 Busch KJ, Kiat H, Stephen M. et al. Cerebral hemodynamics and the role of transcranial Doppler applications in the assessment and management of cerebral arteriovenous malformations. J Clin Neurosci 2016; 30: 24-30
  • 91 Kaspera W, Ladzinski P, Larysz P. et al. Transcranial color-coded Doppler assessment of cerebral arteriovenous malformation hemodynamics in patients treated surgically or with staged embolization. Clin Neurol Neurosurg 2014; 116: 46-53
  • 92 Srinivasan V, Smith M, Bonomo J. Bedside Cranial Ultrasonography in Patients with Hemicraniectomies: A Novel Window into Pathology. Neurocrit Care 2019; 31 (02) 432-433
  • 93 Walter U, Dressler D. Ultrasound-guided botulinum toxin injections in neurology: technique, indications and future perspectives. Expert Rev Neurother 2014; 14 (08) 923-936
  • 94 Razaq S, Kaymak B, Kara M. et al. Ultrasound-Guided Botulinum Toxin Injections in Cervical Dystonia Needs Prompt Muscle Selection, Appropriate Dosage, and Precise Guidance. Am J Phys Med Rehabil 2019; 98 (03) e21
  • 95 Zhu X, Liu M, Gong X. et al. Transcranial Color-Coded Sonography for the Detection of Cerebral Veins and Sinuses and Diagnosis of Cerebral Venous Sinus Thrombosis. Ultrasound Med Biol 2019; 45 (10) 2649-2657
  • 96 Stolz EP. Role of ultrasound in diagnosis and management of cerebral vein and sinus thrombosis. Front Neurol Neurosci 2008; 23: 112-121
  • 97 Sokoloff C, Williamson D, Serri K. et al. Clinical Usefulness of Transcranial Doppler as a Screening Tool for Early Cerebral Hypoxic Episodes in Patients with Moderate and Severe Traumatic Brain Injury. Neurocrit Care 2020; 32 (02) 486-491
  • 98 Knodel S, Roemer SN, Moslemani K. et al. Sonographic and ophthalmic assessment of optic nerve in patients with idiopathic intracranial hypertension: A longitudinal study. J Neurol Sci 2021; 430: 118069
  • 99 Walter U, Schreiber SJ, Kaps M. Doppler and Duplex Sonography for the Diagnosis of the Irreversible Cessation of Brain Function (“Brain Death”): Current Guidelines in Germany and Neighboring Countries. Ultraschall in Med 2016; 37 (06) 558-578
  • 100 Gomez A, Batson C, Froese L. et al. Utility of Transcranial Doppler in Moderate and Severe Traumatic Brain Injury: A Narrative Review of Cerebral Physiologic Metrics. J Neurotrauma 2021; 38 (16) 2206-2220
  • 101 Al-Mufti F, Amuluru K, Changa A. et al. Traumatic brain injury and intracranial hemorrhage-induced cerebral vasospasm: a systematic review. Neurosurg Focus 2017; 43 (05) E14
  • 102 Yoshii Y, Zhao C, Amadio PC. Recent Advances in Ultrasound Diagnosis of Carpal Tunnel Syndrome. Diagnostics (Basel) 2020; 10 (08) 596
  • 103 Walker FO, Cartwright MS, Wiesler ER. et al. Ultrasound of nerve and muscle. Clin Neurophysiol 2004; 115 (03) 495-507
  • 104 Bellner J, Romner B, Reinstrup P. et al. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004; 62 (01) 45-51
  • 105 Bauerle J, Lochner P, Kaps M. et al. Intra- and interobsever reliability of sonographic assessment of the optic nerve sheath diameter in healthy adults. J Neuroimaging 2012; 22 (01) 42-45
  • 106 Moritz S, Kasprzak P, Arlt M. et al. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 2007; 107 (04) 563-569