Horm Metab Res 2022; 54(05): 280-287
DOI: 10.1055/a-1816-8903
Review

Physiological Functions of FBW7 in Metabolism

Jianmei Zhang
1   Department of Endocrinology and Metabolism, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, China
2   Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, China
,
De-huan Kong
3   Department of Endocrinology, Taian City Central Hospital, Taian, China
,
Xiaocheng Huang
4   Department of Health examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, China
,
Rongbo Yu
5   Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Shangdong, China
,
Yachao Yang
6   Department of Endocrinology and Metabolism, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, China
› Author Affiliations

Abstract

FBW7 is the recognition subunit of the SCF (Skp1-Cullin1-F-box proteins) E3 ubiquitin ligase complex, and it determines the specificity of the SCF substrate. SCFFBW7 is a recognized tumor suppressor because of its ability to degrade many proto-oncogenic substrates. Recent studies have shown that FBW7 plays a key role in metabolism by targeting the degradation of critical regulators involved in cellular metabolism in a ubiquitin-dependent manner. Here, we review recent studies, which highlight the important role of FBW7 in metabolism.



Publication History

Received: 14 October 2021

Accepted after revision: 04 April 2022

Article published online:
09 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Damgaard RB. The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ 2021; 28: 423-426
  • 2 Liu J, Peng Y, Zhang J. et al. Targeting SCF E3 ligases for cancer therapies. Adv Exp Med Biol 2020; 1217: 123-146
  • 3 Wang P, Song J, Ye D. CRL3s: The BTB-CUL3-RING E3 ubiquitin ligases. Adv Exp Med Biol 2020; 1217: 211-223
  • 4 Yan L, Lin M, Pan S. et al. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2020; 49: 100673
  • 5 Sionov RV, Netzer E, Shaulian E. Differential regulation of FBXW7 isoforms by various stress stimuli. Cell Cycle 2013; 12: 3547-3554
  • 6 Grim JE, Gustafson MP, Hirata RK. et al. Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol 2008; 181: 913-920
  • 7 Xu Z, Zhuang L, Wang X. et al. FBXW7γ is a tumor-suppressive and prognosis-related FBXW7 transcript isoform in ovarian serous cystadenocarcinoma. Future Oncol 2020; 16: 1921-1930
  • 8 Yu S, Wang F, Tan X. et al. FBW7 targets KLF10 for ubiquitin-dependent degradation. Biochem Biophys Res Commun 2018; 495: 2092-2097
  • 9 Orlicky S, Tang X, Willems A. et al. Structural basis for phosphor-dependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003; 112: 243-256
  • 10 Wei W, Jin J, Schlisio S. et al. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8: 25-33
  • 11 Welcker M, Singer J, Loeb KR. et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 2003; 12: 381-392
  • 12 Taira N, Mimoto R, Kurata M. et al. priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J Clin Invest 2012; 122: 859-872
  • 13 Koepp DM, Schaefer LK, Ye X. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294: 173-177
  • 14 Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67: 1-15
  • 15 Xu JW, Wang J, Yang K. et al. FBW7 inhibits nucleus pulposus cells proliferation by downregulation of cyclin E in the intervertebral disc degeneration. Eur Rev Med Pharmacol Sci 2020; 24: 4053
  • 16 Yada M, Hatakeyama S, Kamura T. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116-2125
  • 17 Zhu Q, Hu L, Guo Y. er al. FBW7 in hematological tumors. Oncol Lett 2020; 19: 1657-1664
  • 18 Csizmok V, Montecchio M, Lin H. et al. Multivalent interactions with Fbw7 and Pin1 facilitate recognition of c-Jun by the SCFFbw7 ubiquitin ligase. Structure 2018; 26: 28-39
  • 19 Li X, Zhang N, Zhang Y. et al. E3 ligase Fbw7 participates in oxidative stress‑induced myocardial cell injury via interacting with Mcl‑1. Mol Med Rep 2019; 20: 1561-1568
  • 20 Shimizu K, Nihira NT, Inuzuka H. et al. Physiological functions of FBW7 in cancer and metabolism. Cell Signal 2018; 46: 15-22
  • 21 Warburg O. On the origin of cancer cells. Science 1956; 123: 309-314
  • 22 Sun L, Suo C, Li ST. et al. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg effect. Biochim Biophys Acta Rev Cancer 2018; 1870: 51-66
  • 23 Wang L, Yin H, Bi R. et al. ENO1-targeted superparamagnetic iron oxide nanoparticles for detecting pancreatic cancer by magnetic resonance imaging. J Cell Mol Med 2020; 24: 5751-5757
  • 24 Kim DJ, Vo MT, Choi SH. et al. Tristetraprolin-mediated hexokinase 2 expression regulation contributes to glycolysis in cancer cells. Mol Biol Cell 2019; 30: 542-553
  • 25 Tseng PL, Chen CW, Hu KH. et al. The decrease of glycolytic enzyme hexokinase 1 accelerates tumor malignancy via deregulating energy metabolism but sensitizes cancer cells to 2-deoxyglucose inhibition. Oncotarget 2018; 9: 18949-18969
  • 26 Zhang Z, Deng X, Liu Y. et al. PKM2, function and expression and regulation. Cell Biosci 2019; 9: 52
  • 27 Urbańska K, Orzechowski A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci 2019; 20: 2085
  • 28 Panda S, Banerjee N, Chatterjee S. Solute carrier proteins and c-Myc: a strong connection in cancer progression. Drug Discov Today 2020; 25: 891-900
  • 29 Heydarzadeh S, Moshtaghie AA, Daneshpoor M. et al. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18: 83
  • 30 Tarrado-Castellarnau M, de Atauri P, Cascante M. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget 2016; 7: 62726-62753
  • 31 Guddeti RK, Thomas L, Kannan A. et al. The chromatin modifier MORC2 affects glucose metabolism by regulating the expression of lactate dehydrogenase A through a feed forward loop with c-Myc. FEBS Lett 2021; 595: 1289-1302
  • 32 Doherty JR, Yang C, Scott KE. et al. Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res 2014; 74: 908-920
  • 33 Gan L, Xiu R, Ren P. et al. Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene 2016; 35: 3037-3048
  • 34 Ji S, Qin Y, Liang C. et al. FBW7 (F-box and WD Repeat Domain-Containing 7) negatively regulates glucose metabolism by targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) axis in pancreatic cancer. Clin Cancer Res 2016; 22: 3950-3960
  • 35 Qin Y, Hu Q, Xu J. et al. PRMT5 enhances tumorigenicity and glycolysis in pancreatic cancer via the FBW7/cMyc axis. Cell Commun Signal 2019; 17: 30
  • 36 Wang C, Chao Y, Xu W. et al. Myeloid FBW7 deficiency disrupts redox homeostasis and aggravates dietary-induced insulin resistance. Redox Biol 2020; 37: 101688
  • 37 Honzawa N, Fujimoto K. The plasticity of pancreatic β-cells. Metabolites 2021; 11: 218
  • 38 Habener JF, Kemp DM, Thomas MK. Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005; 146: 1025-1034
  • 39 Heremans Y, Van De Casteele M, in’t Veld P. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 2002; 159: 303-312
  • 40 Schwitzgebel VM, Scheel DW, Conners JR.. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000; 127: 3533-3542
  • 41 Gribben C, Lambert C, Messal HA. et al. Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas. Cell Stem Cell 2021; S1934–5909: 00340-4
  • 42 Kimura-Nakajima C, Sakaguchi K, Hatano Y. et al. Ngn3-positive cells arise from pancreatic duct cells. Int J Mol Sci 2021; 22: 8548
  • 43 Roark R, Itzhaki L, Philpott A. Complex regulation controls Neurogenin3 proteolysis. Biol Open 2012; 1: 1264-1272
  • 44 Sancho R, Gruber R, Gu G.. et al. Loss of Fbw7 reprograms adult pancreatic ductal cells into alpha, delta, and beta cells. Cell Stem Cell 2014; 15: 139-153
  • 45 Eberle D, Hegarty B, Bossard P. et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86: 839-848
  • 46 Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology – divergent pathophysiology. Nat Rev Endocrinol 2017; 13: 710-730
  • 47 Park HY, Kang HS, Im SS. Recent insight into the correlation of SREBP-mediated lipid metabolism and innate immune response. J Mol Endocrinol 2018; 61: R123-R131
  • 48 DeBose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci 2018; 43: 358-368
  • 49 Sundqvist A, Bengoechea-Alonso MT, Ye X. et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 2005; 1: 379-391
  • 50 Bengoechea-Alonso MT, Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 2009; 284: 5885-5895
  • 51 Onoyama I, Suzuki A, Matsumoto A. et al. Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J Clin Invest 2011; 121: 342-354
  • 52 Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33: 207-214
  • 53 Zhang T, Suo C, Zheng C. et al. Hypoxia and metabolism in metastasis. Adv Exp Med Biol 2019; 1136: 87-95
  • 54 Favaro E, Bensaad K, Chong MG. et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 2012; 16: 751-764
  • 55 Bensaad K, Favaro E, Lewis CA. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 2014; 9: 349-365
  • 56 Cassavaugh JM, Hale SA, Wellman TL. et al. Negative regulation of HIF-1alpha by an FBW7-mediated degradation pathway during hypoxia. J Cell Biochem 2011; 112: 3882-3890
  • 57 Flugel D, Gorlach A, Kietzmann T. GSK-3beta regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1alpha. Blood 2012; 119: 1292-1301
  • 58 Rius-Pérez S, Torres-Cuevas I, Millán I. et al. PGC-1α, Inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev 2020; 1452696
  • 59 Puigserver P, Wu Z, Park CW. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829-839
  • 60 Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocrine Reviews 2003; 24: 78-90
  • 61 Vandenbeek R, Khan NP, Estall JL. Linking metabolic disease with the PGC-1α Gly482Ser polymorphism. Endocrinology 2018; 159: 853-865
  • 62 Sergi D, Naumovski N, Heilbronn LK. et al. Mitochondrial dysfunction and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol 2019; 10: 532
  • 63 Wu H, Deng X, Shi Y. et al. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229: 99-115
  • 64 Koo S.-H, Satoh H, Herzig S. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat Med 2004; 10: 530-534
  • 65 Trausch-Azar JS, Abed M, Orian A. et al. Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol 2015; 230: 842-852
  • 66 Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005; 11: 353-361
  • 67 Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004; 4: 335-48
  • 68 Sarbassov DD, Guertin DA, Ali SM. et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098-110
  • 69 Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22
  • 70 Jung CH, Ro SH, Cao J. et al. mTOR regulation of autophagy. FEBS Lett 2010; 584: 1287-1295
  • 71 Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124: 471-484
  • 72 Kim JE, Chen J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004; 53: 2748-2756
  • 73 Manning BD, Logsdon MN, Lipovsky AI. et al. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev 2005; 19: 1773-1778
  • 74 Um SH, Frigerio F, Watanabe M. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200-205
  • 75 Mao JH, Kim IJ, Wu D. et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 2008; 321: 1499-1502
  • 76 Xu Y, Tian C, Sun J. et al. FBXW7-induced MTOR degradation forces autophagy to counteract persistent prion infection. Mol Neurobiol 2016; 53: 706-719
  • 77 Xie CM, Tan M, Lin XT. et al. The FBXW7-SHOC2-raptor axis controls the cross-talks between the RAS-ERK and mTORC1 signaling pathways. Cell Rep 2019; 26: 3037-3050.e4
  • 78 Koo J, Wu X, Mao Z. et al. Rictor undergoes glycogen synthase kinase 3 (GSK3)-dependent, FBXW7-mediated ubiquitination and proteasomal degradation. J Biol Chem 2015; 290: 14120-14129
  • 79 Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7: 885-896
  • 80 Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 1998; 273: 30057-30060
  • 81 Lee JE, Schmidt H, Lai B. et al. Transcriptional and epigenomic regulation of adipogenesis. Mol Cell Biol 2019; 39: e00601-18
  • 82 Bahmad HF, Daouk R, Azar J. et al. Modeling adipogenesis: current and future perspective. Cells 2020; 9: 2326
  • 83 Hishida T, Nishizuka M, Osada S. et al. The role of C/EBPdelta in the early stages of adipogenesis. Biochimie 2009; 91: 654-657
  • 84 Merrett JE, Bo T, Psaltis PJ. et al. Identification of DNA response elements regulating expression of CCAAT/enhancer-binding protein (C/EBP) β and δ and MAP kinase-interacting kinases during early adipogenesis. Adipocyte 2020; 9: 427-442
  • 85 Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 2015; 290: 755-761
  • 86 Bengoechea-Alonso MT, Ericsson J. The ubiquitin ligase Fbxw7 controls adipocyte differentiation by targeting C/EBP alpha for degradation. Proc Natl Acad Sci US A 2010; 107: 11817-11822