CC BY 4.0 · Methods Inf Med 2022; 61(S 02): e73-e88
DOI: 10.1055/a-1877-9498
Original Article

Using an Ontology to Derive a Sharable and Interoperable Relational Data Model for Heterogeneous Healthcare Data and Various Applications

1   GRIIS, Université de Sherbrooke, Sherbrooke, Canada
,
Luc Lavoie
1   GRIIS, Université de Sherbrooke, Sherbrooke, Canada
,
Benoit Fraikin
1   GRIIS, Université de Sherbrooke, Sherbrooke, Canada
,
2   IRIT-MELODI, CNRS, Toulouse, France
,
1   GRIIS, Université de Sherbrooke, Sherbrooke, Canada
,
3   INSERM UMRS 1138 Team 22, Université de Paris, Paris, France
,
1   GRIIS, Université de Sherbrooke, Sherbrooke, Canada
› Author Affiliations

Abstract

Background A large volume of heavily fragmented data is generated daily in different healthcare contexts and is stored using various structures with different semantics. This fragmentation and heterogeneity make secondary use of data a challenge. Data integration approaches that derive a common data model from sources or requirements have some advantages. However, these approaches are often built for a specific application where the research questions are known. Thus, the semantic and structural reconciliation is often not reusable nor reproducible. A recent integration approach using knowledge models has been developed with ontologies that provide a strong semantic foundation. Nonetheless, deriving a data model that captures the richness of the ontology to store data with their full semantic remains a challenging task.

Objectives This article addresses the following question: How to design a sharable and interoperable data model for storing heterogeneous healthcare data and their semantic to support various applications?

Method This article describes a method using an ontological knowledge model to automatically generate a data model for a domain of interest. The model can then be implemented in a relational database which efficiently enables the collection, storage, and retrieval of data while keeping semantic ontological annotations so that the same data can be extracted for various applications for further processing.

Results This article (1) presents a comparison of existing methods for generating a relational data model from an ontology using 23 criteria, (2) describes standard conversion rules, and (3) presents O n t o R e l a , a prototype developed to demonstrate the conversion rules.

Conclusion This work is a first step toward automating and refining the generation of sharable and interoperable relational data models using ontologies with a freely available tool. The remaining challenges to cover all the ontology richness in the relational model are pointed out.

Ethical Considerations

This research does not involve human subjects.




Publication History

Received: 19 January 2022

Accepted: 11 June 2022

Accepted Manuscript online:
16 June 2022

Article published online:
03 December 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R, Ruzzi M. Using OWL in data integration. In: de Virgilio R, Giunchiglia F, Tanca L, eds. Semantic Web Information Management: A Model-Based Perspective. Berlin Heidelberg: Springer; 2010: 397-424
  • 2 Pacaci A, Gonul S, Sinaci AA, Yuksel M, Laleci Erturkmen GB. A semantic transformation methodology for the secondary use of observational healthcare data in postmarketing safety studies. Front Pharmacol 2018; 9: 435
  • 3 Spanos DE, Stavrou P, Mitrou N. Bringing relational databases into the semantic web: a survey. Semant Web 2012; 3 (02) 169-209
  • 4 Khouri S, Bellatreche L, Jean S, Ait-Ameur Y. Requirements driven data warehouse design: we can go further. In: 6th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2014, October 8–11, 2014. Vol 8803. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Berlin: Springer Verlag; 2014: 588-603
  • 5 Abello A, Romero O, Bach Pedersen T. et al. Using semantic web technologies for exploratory OLAP: a survey. IEEE Trans Knowl Data Eng 2015; 27 (02) 571-588
  • 6 Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb Med Inform 2008; 67-79
  • 7 Santana da Silva F, Jansen L, Freitas F, Schulz S. Ontological interpretation of biomedical database content. J Biomed Semantics 2017; 8 (01) 24
  • 8 Haendel MA, Chute CG, Robinson PN. Classification, ontology, and precision medicine. N Engl J Med 2018; 379 (15) 1452-1462
  • 9 Smith B, Ashburner M, Rosse C. et al; OBI Consortium. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 2007; 25 (11) 1251-1255
  • 10 Schuler JC, Ceusters WM. The problems of realism-based ontology design: a case study in creating definitions for an application ontology for diabetes camps. AMIA Annu Symp Proc 2018; 2017: 1517-1526
  • 11 Motik B, Patel-Schneider PF, Parsia B. OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second Edition). W3C. Published 2012. Accessed April 3, 2016 at: https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
  • 12 Baader F. ed. The Description Logic Handbook: Theory, Implementation, and Applications. 2nd ed., paperback ed. Cambridge: Cambridge University Press; 2010
  • 13 Codd EF. The Relational Model for Database Management: Version 2. Boston: Addison-Wesley Longman Publishing Co., Inc.; 1990
  • 14 Darwen H, Date CJ. The third manifesto. SIGMOD Rec 1995; 24 (01) 39-49
  • 15 Ethier JF, Barton A, Taseen R. An ontological analysis of drug prescriptions. Appl Ontol 2018; 13 (04) 273-294
  • 16 Dahl LT, Katz A, McGrail K. et al. The SPOR-Canadian Data Platform: a national initiative to facilitate data rich multi-jurisdictional research. Int J Popul Data Sci 2020; 5 (01) 1374
  • 17 Khnaisser C, Lavoie L, Burgun A, Ethier JF. Generating relational database using ontology review: issues, challenges and trends. Int J Adv Comput Sci Appl IJACSA 2018; 9 (06) 139-145
  • 18 Dou D, Qin H, Lependu P. OntoGrate: towards automatic integration for relational databases and the semantic web through an ontology-based framework. Int J Semant Comput 2010; 04 (01) 123-151
  • 19 Bellatreche L, Ait-Ameur Y, Chakroun C. A design methodology of ontology based database applications. Log J IGPL 2010; 19 (05) 648-665
  • 20 Saccol DdB, Andrade TdC, Piveta EK. Mapping OWL ontologies to relational schemas. Paper presented at: 2011 IEEE International Conference on Information Reuse Integration; 2011: 71-76
  • 21 Vyšniauskas E, Nemuraitė L, Paradauskas B. Preserving semantics of Owl 2 ontologies in relational databases using hybrid approach. Inf Technol Control 2012; 41 (02) 103-115
  • 22 Hornung T, May W. Experiences from a TBox reasoning application: deriving a relational model by OWL schema analysis. In: Rodriguez-Muro M, Jupp S, Srinivas K, eds. Proceedings of the 10th International Workshop on OWL: Experiences and Directions (OWLED 2013) Co-Located with 10th Extended Semantic Web Conference (ESWC 2013), Montpellier, France, May 26–27, 2013; Vol 1080. CEUR Workshop Proceedings. CEUR-WS.org; 2013. Accessed February 9, 2018 at: http://ceur-ws.org/Vol-1080/owled2013_3.pdf
  • 23 Podsiadły-Marczykowska T, Gambin T, Zawiślak R. Rule-based algorithm transforming OWL ontology into relational database. In: Beyond Databases, Architectures, and Structures. Communications in Computer and Information Science. Cham: Springer; 2014: 148-159
  • 24 Jiménez-Ruiz E, Kharlamov E, Zheleznyakov D. et al. BootOX: practical mapping of RDBs to OWL 2. In: The Semantic Web - ISWC 2015. Cham: Springer; 2015: 113-132
  • 25 Ho LTT, Tran CPT, Hoang Q. An approach of transforming ontologies into relational databases. In: Intelligent Information and Database Systems. Cham: Springer; 2015: 149-158
  • 26 Afzal H, Waqas M, Naz T. OWLMap: fully automatic mapping of ontology into relational database schema. Int J Adv Comput Sci Appl 2016; 7 (11) 7-15
  • 27 Achpal A, Bannihatti Kumar V, Mahesh K. Modeling ontology semantic constraints in relational database management system. In: Proceedings of the International MultiConference of Engineers and Computer Scientists; 2016. Accessed February 15, 2018 at: https://www.researchgate.net/publication/296437737_Modeling_Ontology_Semantic_Constraints_in_Relational_Database_Management_System
  • 28 Mahmudi K, Liem MMI, Akbar S. Ontology to relational database transformation for web application development and maintenance. J Phys Conf Ser 2018; 971 (01) 012031
  • 29 Guidoni GL, Almeida JPA, Guizzardi G. Transformation of ontology-based conceptual models into relational schemas. In: Dobbie G, Frank U, Kappel G, Liddle SW, Mayr HC (eds). Conceptual modeling. ER 2020. Lecture notes in computer science(), vol 12400. Springer, Cham. https://doi.org/10.1007/978-3-030-62522-1_23 2020
  • 30 Abadi DJ, Marcus A, Madden SR, Hollenbach K. SW-Store: a vertically partitioned DBMS for Semantic Web data management. VLDB J 2009; 18 (02) 385-406