Hamostaseologie 2023; 43(03): 179-187
DOI: 10.1055/a-1892-0074
Original Article

Impact of Tyrosine Kinase Inhibitors Applied for First-Line Chronic Myeloid Leukemia Treatment on Platelet Function in Whole Blood of Healthy Volunteers In Vitro

Falk Eckart
1   Department of Paediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
Josephine T. Tauer
2   Department of Dentistry, McGill University, Shriners Hospital for Children, Montreal, Canada
Meinolf Suttorp
3   Paediatric Haematology and Oncology, Medical Faculty, TU Dresden, Germany
Ralf Knöfler
1   Department of Paediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
3   Paediatric Haematology and Oncology, Medical Faculty, TU Dresden, Germany
› Author Affiliations


The tyrosine kinase inhibitors (TKIs) imatinib, dasatinib, bosutinib, and nilotinib are established for first-line treatment of chronic myeloid leukemia (CML) but may cause side effects such as bleeding and thrombotic complications. We investigated the impact of TKIs on platelet function ex vivo in anticoagulated whole blood (WB) samples from healthy adults by lumiaggregometry and PFA-100 test. Samples (n = 15 per TKI) were incubated for 30 minutes with TKI at therapeutically relevant final concentrations. Aggregation and ATP release were induced by collagen (1 µg/mL), arachidonic acid (0.5 mmol/L), and thrombin (0.5 U/mL). Imatinib, bosutinib, and nilotinib significantly increased collagen-induced aggregation compared with controls. In addition, for bosutinib and nilotinib, a significant increase in aggregation after induction with arachidonic acid was detected. ATP-release and PFA-100 closure times were not influenced significantly by these three TKI. In contrast, dasatinib demonstrated a concentration-dependent inhibition of collagen-induced aggregation and ATP release and a significant prolongation of the PFA-100 closure time with the collagen/epinephrine cartridge. Aggregation and ATP release by other agonists as well as closure time with the collagen/ADP cartridge were not influenced significantly. In conclusion, we clearly show a concentration-dependent inhibition of collagen-induced platelet function in WB by dasatinib confirming prior results obtained in platelet-rich plasma. Bosutinib and nilotinib exerted no impairment of platelet activation. On the contrary, both TKI showed signs of platelet activation. When comparing our results with existing data, imatinib in therapeutic relevant concentrations does not impair platelet function.


Die Tyrosinkinaseinhibitoren (TKI) Imatinib, Dasatinib, Bosutinib und Nilotinib sind als Erstlinientherapie der chronischen myeloischen Leukämie etabliert, können aber Nebenwirkungen wie Blutungen und thrombotische Komplikationen verursachen. Wir untersuchten den Einfluss dieser TKI auf die Thrombozytenfunktion ex vivo in antikoagulierten Vollblutproben gesunder Erwachsener mittels Lumiaggregometrie und dem PFA-100®-Test. Die Proben (n = 15 pro TKI) wurden für 30 Minuten mit TKI in therapeutisch relevanten Endkonzentrationen inkubiert. Aggregation und ATP-Freisetzung wurden durch Kollagen (1 µg/ml), Arachidonsäure (0,5 mmol/l) und Thrombin (0,5 U/ml) induziert. Für Imatinib, Bosutinib und Nilotinib konnte eine signifikante Steigerung der kollageninduzierten Aggregation im Vergleich zur Kontrolle gezeigt werden. Zusätzlich wurde für Bosutinib und Nilotinib eine signifikante Steigerung der Aggregation nach Arachidonsäure-Induktion gemessen. Die ATP-Freisetzung und die PFA-100®-Verschlusszeiten wurden durch diese drei TKI nicht signifikant beeinflusst. Im Gegensatz dazu zeigte Dasatinib eine konzentrationsabhängige Hemmung von kollageninduzierter Aggregation und ATP-Freisetzung sowie eine signifikante Verlängerung der PFA-100®-Verschlusszeiten mit der Kollagen/Epinephrin-Messzelle. Sowohl die Aggregation und ATP-Freisetzung durch andere Agonisten als auch die Verschlusszeiten der Kollagen/ADP-Messzelle wurden nicht signifikant beeinflusst. Zusammenfassend konnten wir eindeutig eine konzentrationsabhängige Hemmung der kollageninduzierten Thrombozytenfunktion im Vollblut durch Dasatinib zeigen und damit frühere Ergebnisse aus plättchenreichem Plasma bestätigen. Bosutinib und Nilotinib bewirkten keine Einschränkung der Thrombozytenaktivierung. Beide TKI führten im Gegenteil zu einer Thrombozytenaktivierung. Imatinib beeinträchtigt in Zusammenschau mit der verfügbaren Literatur in therapeutisch relevanten Konzentrationen die Plättchenfunktion nicht.

Ethical Vote

Institutional Ethical Board Committee, permit number EK 23012015 (date: April 28, 2015).

Author Contributions

The concept of this investigation was developed by all authors. F.E. performed all laboratory work as part of his medical doctoral thesis, sought informed consent, and collected blood from the voluntary donors. J.T.T. supervised the laboratory work and assisted with data interpretation. F.E. and R.K. collected and managed all data. R.K. and M.S. supervised all approaches, assisted F.E. with writing the first draft of the manuscript, and critically revised all comments. All authors revised the text and approved the final version of the manuscript.

Supplementary Material

Publication History

Received: 22 December 2021

Accepted: 05 July 2022

Article published online:
24 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood 2016; 128 (01) 17-23
  • 2 Garcia-Gutiérrez V, Hernández-Boluda JC. Tyrosine kinase inhibitors available for chronic myeloid leukemia: efficacy and safety. Front Oncol 2019; 9: 603
  • 3 Suttorp M, Schulze P, Glauche I. et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: results from a phase III trial. Leukemia 2018; 32 (07) 1657-1669
  • 4 Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol 2020; 95 (06) 691-709
  • 5 Wehrle J, von Bubnoff N. Ponatinib: a third-generation inhibitor for the treatment of CML. In: Martens UM. ed. Small Molecules in Hematology. Recent Results in Cancer Research. Springer International Publishing; 2018: 109-118 DOI: 10.1007/978-3-319-91439-8_5
  • 6 Massimino M, Stella S, Tirrò E. et al. ABL1-directed inhibitors for CML: efficacy, resistance and future perspectives. Anticancer Res 2020; 40 (05) 2457-2465
  • 7 Remsing Rix LL, Rix U, Colinge J. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 2009; 23 (03) 477-485
  • 8 Davis MI, Hunt JP, Herrgard S. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2011; 29 (11) 1046-1051
  • 9 Abdul Sater H. Receptor tyrosine kinases in human platelets: a review of expression, function and inhibition in relation to the risk of bleeding or thrombocytopenia from phase I through phase III trials. JCPCR 2017; 8 (06) DOI: 10.15406/jcpcr.2017.08.00298.
  • 10 Giles FJ, O'Dwyer M, Swords R. Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 2009; 23 (10) 1698-1707
  • 11 Deb S, Boknäs N, Sjöström C, Tharmakulanathan A, Lotfi K, Ramström S. Varying effects of tyrosine kinase inhibitors on platelet function - a need for individualized CML treatment to minimize the risk for hemostatic and thrombotic complications?. Cancer Med 2020; 9 (01) 313-323
  • 12 Latifi Y, Moccetti F, Wu M. et al. Thrombotic microangiopathy as a cause of cardiovascular toxicity from the BCR-ABL1 tyrosine kinase inhibitor ponatinib. Blood 2019; 133 (14) 1597-1606
  • 13 Bar-Natan M, Hoffman R. New insights into the causes of thrombotic events in patients with myeloproliferative neoplasms raise the possibility of novel therapeutic approaches. Haematologica 2019; 104 (01) 3-6
  • 14 Knöfler R, Lange BS, Paul F, Tiebel O, Suttorp M. Bleeding signs due to acquired von Willebrand syndrome at diagnosis of chronic myeloid leukaemia in children. Br J Haematol 2020; 188 (05) 701-706
  • 15 Alhawiti N, Burbury KL, Kwa FA. et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res 2016; 145: 54-64
  • 16 Haguet H, Douxfils J, Chatelain C, Graux C, Mullier F, Dogné JM. BCR-ABL tyrosine kinase inhibitors: Which mechanism(s) may explain the risk of thrombosis?. TH Open 2018; 2 (01) e68-e88
  • 17 Beke Debreceni I, Mezei G, Batár P, Illés Á, Kappelmayer J. Dasatinib inhibits procoagulant and clot retracting activities of human platelets. Int J Mol Sci 2019; 20 (21) 5430
  • 18 Gratacap MP, Martin V, Valéra MC. et al. The new tyrosine-kinase inhibitor and anticancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood 2009; 114 (09) 1884-1892
  • 19 Quintás-Cardama A, Han X, Kantarjian H, Cortes J. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood 2009; 114 (02) 261-263
  • 20 Amsberg GK, Koschmieder S. Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia. OncoTargets Ther 2013; 6: 99-106
  • 21 Cortes JE, Kantarjian HM, Brümmendorf TH. et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 2011; 118 (17) 4567-4576
  • 22 Neelakantan P, Marin D, Laffan M, Goldman J, Apperley J, Milojkovic D. Platelet dysfunction associated with ponatinib, a new pan BCR-ABL inhibitor with efficacy for chronic myeloid leukemia resistant to multiple tyrosine kinase inhibitor therapy. Haematologica 2012; 97 (09) 1444-1444
  • 23 Merkulova A, Mitchell SC, Stavrou EX, Forbes GL, Schmaier AH. Ponatinib treatment promotes arterial thrombosis and hyperactive platelets. Blood Adv 2019; 3 (15) 2312-2316
  • 24 Loren CP, Aslan JE, Rigg RA. et al. The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear. Thromb Res 2015; 135 (01) 155-160
  • 25 Knöfler R, Siegert G, Kuhlisch E, Weissbach G. Diagnostics of platelet function disorders by lumi-aggregometry—results and comparison of methods. In: Scharrer I, Schramm W. eds. 34th Hemophilia Symposium. Springer; 2005: 107-115 DOI: 10.1007/3-540-27022-1_17
  • 26 Knöfler R, Weissbach G, Kuhlisch E. Platelet function tests in childhood. Measuring aggregation and release reaction in whole blood. Semin Thromb Hemost 1998; 24 (06) 513-521
  • 27 Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM, Ostgaard RA. Description of an in vitro platelet function analyzer–PFA-100. Semin Thromb Hemost 1995; 21 (02, Suppl 2): 106-112
  • 28 Emir H, Albrecht-Schgoer K, Huber K. et al. Nilotinib exerts direct pro-atherogenic and anti-angiogenic effects on vascular endothelial cells: a potential explanation for drug-induced vasculopathy in CML. Blood 2013; 122 (21) 257
  • 29 Akay OM, Mutlu F, Gülbaş Z. Platelet dysfunction in patients with chronic myeloid leukemia: does imatinib mesylate improve it?. Turk J Haematol 2016; 33 (02) 127-130
  • 30 Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005; 44 (09) 879-894
  • 31 Miura M. Therapeutic drug monitoring of imatinib, nilotinib, and dasatinib for patients with chronic myeloid leukemia. Biol Pharm Bull 2015; 38 (05) 645-654
  • 32 Mezei G, Debreceni IB, Kerenyi A. et al. Dasatinib inhibits coated-platelet generation in patients with chronic myeloid leukemia. Platelets 2019; 30 (07) 836-843
  • 33 Alqasim AMZ, Obaid GM, Yaseen YG, Alwan AF. Effects of nilotinib on platelet function in patients with chronic myeloid leukemia in chronic phase. Leuk Res Rep 2018; 11: 46-50
  • 34 Quintás-Cardama A, Kantarjian H, Cortes J. Nilotinib-associated vascular events. Clin Lymphoma Myeloma Leuk 2012; 12 (05) 337-340
  • 35 Haguet H, Douxfils J, Mullier F, Chatelain C, Graux C, Dogné JM. Risk of arterial and venous occlusive events in chronic myeloid leukemia patients treated with new generation BCR-ABL tyrosine kinase inhibitors: a systematic review and meta-analysis. Expert Opin Drug Saf 2017; 16 (01) 5-12
  • 36 Pasvolsky O, Leader A, Iakobishvili Z, Wasserstrum Y, Kornowski R, Raanani P. Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. Cardiooncology 2015; 1 (01) 5
  • 37 Chai-Adisaksopha C, Hillis CM, Lam W. Cardiovascular events in patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors: a systematic review and meta-analysis. Journal of Clinical Oncology 2015; 33 (15, Suppl): 7056-7056
  • 38 Caocci G, Mulas O, Capodanno I. et al. Low-density lipoprotein (LDL) levels and risk of arterial occlusive events in chronic myeloid leukemia patients treated with nilotinib. Ann Hematol 2021; 100 (08) 2005-2014
  • 39 Setiabudy-Dharma R, Funahara Y. Enhancement of collagen-induced aggregation of platelets in whole blood. Thromb Res 1986; 42 (05) 621-634
  • 40 Di Gion P, Kanefendt F, Lindauer A. et al. Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet 2011; 50 (09) 551-603
  • 41 Lotfi K, Deb S, Sjöström C, Tharmakulanathan A, Boknäs N, Ramström S. Individual variation in hemostatic alterations caused by tyrosine kinase inhibitors - a way to improve personalized cancer therapy?. Blood 2016; 128 (22) 1908
  • 42 Quintás-Cardama A, Han X, Kantarjian H, Cortes J. Dasatinib-induced platelet dysfunction. Blood 2007; 110 (11) 2941-2941
  • 43 Zhang Y, Diamond SL. Src family kinases inhibition by dasatinib blocks initial and subsequent platelet deposition on collagen under flow, but lacks efficacy with thrombin generation. Thromb Res 2020; 192: 141-151
  • 44 Sener Y, Okay M, Aydin S, Buyukasik Y, Akbiyik F, Dikmen ZG. TKI-related platelet dysfunction does not correlate with bleeding in patients with chronic phase-chronic myeloid leukemia with complete hematological response. Clin Appl Thromb Hemost 2019; 25: 1076029619858409
  • 45 Wangsuekul W, Norasetthada L, Tantiworawit A. et al. The class effect of tyrosine kinase inhibitors on impaired platelet aggregation on stimulation with collagen and arachidonic acid. Blood 2015; 126 (23) 5172-5172
  • 46 Nazha A, Romo CG, Kantarjian H, Cortes J. The clinical impact of ponatinib on the risk of bleeding in patients with chronic myeloid leukemia. Haematologica 2013; 98 (10) e131
  • 47 Deb S, Sjöström C, Tharmakulanathan A, Boknäs N, Lotfi K, Ramström S. PO-55 - Individual variation in hemostatic alterations caused by tyrosine kinase inhibitors - a way to improve personalized cancer therapy?. Thromb Res 2016; 140 (Suppl. 01) S196-S197
  • 48 Rassi FE, Khoury HJ. Bosutinib: a SRC-ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia. Pharm Genomics Pers Med 2013; 6: 57-62
  • 49 Abbas R, Hsyu PH. Clinical pharmacokinetics and pharmacodynamics of bosutinib. Clin Pharmacokinet 2016; 55 (10) 1191-1204
  • 50 Tian X, Zhang H, Heimbach T. et al. Clinical pharmacokinetic and pharmacodynamic overview of nilotinib, a selective tyrosine kinase inhibitor. J Clin Pharmacol 2018; 58 (12) 1533-1540
  • 51 Tanaka C, Yin OQP, Sethuraman V. et al. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 2010; 87 (02) 197-203