CC BY-NC-ND 4.0 · Thromb Haemost 2022; 122(11): 1843-1857
DOI: 10.1055/a-1896-7092
Review Article

Bleeding Propensity in Waldenström Macroglobulinemia: Potential Causes and Evaluation

1   Australian Cancer Research Foundation, Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
,
2   Department of Haematology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
,
2   Department of Haematology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
3   College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
,
1   Australian Cancer Research Foundation, Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
› Author Affiliations

Abstract

Waldenström macroglobulinemia (WM) is a rare, incurable, low-grade, B cell lymphoma. Symptomatic disease commonly results from marrow or organ infiltration and hyperviscosity secondary to immunoglobulin M paraprotein, manifesting as anemia, bleeding and neurological symptoms among others. The causes of the bleeding phenotype in WM are complex and involve several intersecting mechanisms. Evidence of defects in platelet function is lacking in the literature, but factors impacting platelet function and coagulation pathways such as acquired von Willebrand factor syndrome, hyperviscosity, abnormal hematopoiesis, cryoglobulinemia and amyloidosis may contribute to bleeding. Understanding the pathophysiological mechanisms behind bleeding is important, as common WM therapies, including chemo-immunotherapy and Bruton's tyrosine kinase inhibitors, carry attendant bleeding risks. Furthermore, due to the relatively indolent nature of this lymphoma, most patients diagnosed with WM are often older and have one or more comorbidities, requiring treatment with anticoagulant or antiplatelet drugs. It is thus important to understand the origin of the WM bleeding phenotype, to better stratify patients according to their bleeding risk, and enhance confidence in clinical decisions regarding treatment management. In this review, we detail the evidence for various contributing factors to the bleeding phenotype in WM and focus on current and emerging diagnostic tools that will aid evaluation and management of bleeding in these patients.

Author Contributions

S.A.B., D.T., and E.E.G. planned and drafted the manuscript. All authors contributed to the review of the manuscript. Images were created using Smart Servier (https://smart.servier.com/).


* Equal senior authors.




Publication History

Received: 08 March 2022

Accepted: 22 June 2022

Accepted Manuscript online:
11 July 2022

Article published online:
17 October 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Talaulikar D, Tam CS, Joshua D. et al. Treatment of patients with Waldenström macroglobulinaemia: clinical practice guidelines from the Myeloma Foundation of Australia Medical and Scientific Advisory Group. Intern Med J 2017; 47 (01) 35-49
  • 2 García-Sanz R, Montoto S, Torrequebrada A. et al; Spanish Group for the Study of Waldenström Macroglobulinaemia and PETHEMA (Programme for the Study and Treatment of Haematological Malignancies). Waldenström macroglobulinaemia: presenting features and outcome in a series with 217 cases. Br J Haematol 2001; 115 (03) 575-582
  • 3 Treon SP. How I treat Waldenström macroglobulinemia. Blood 2015; 126 (06) 721-732
  • 4 Bustoros M, Sklavenitis-Pistofidis R, Kapoor P. et al. Progression risk stratification of asymptomatic Waldenström macroglobulinemia. J Clin Oncol 2019; 37 (16) 1403-1411
  • 5 Rodriguez S, Celay J, Goicoechea I. et al. Preneoplastic somatic mutations including MYD88 L265P in lymphoplasmacytic lymphoma. Sci Adv 2022; 8 (03) eabl4644
  • 6 Treon SP, Meid K, Hunter ZR. et al. Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström macroglobulinemia. Blood 2021; 138 (17) 1535-1539
  • 7 Treon SP, Xu L, Yang G. et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J Med 2012; 367 (09) 826-833
  • 8 Gachard N, Parrens M, Soubeyran I. et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 2013; 27 (01) 183-189
  • 9 Xu L, Hunter ZR, Yang G. et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121 (11) 2051-2058
  • 10 Varettoni M, Arcaini L, Zibellini S. et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121 (13) 2522-2528
  • 11 Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 2012; 367 (23) 2255-2256 , author reply 2256–2257
  • 12 Jiménez C, Sebastián E, Chillón MC. et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström's macroglobulinemia. Leukemia 2013; 27 (08) 1722-1728
  • 13 Ansell SM, Hodge LS, Secreto FJ. et al. Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma. Blood Cancer J 2014; 4: e183
  • 14 Hunter ZR, Xu L, Tsakmaklis N. et al. Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv 2018; 2 (21) 2937-2946
  • 15 Maqbool MG, Tam CS, Morison IM. et al. A practical guide to laboratory investigations at diagnosis and follow up in Waldenström macroglobulinaemia: recommendations from the Medical and Scientific Advisory Group, Myeloma Australia, the Pathology Sub-committee of the Lymphoma and Related Diseases Registry and the Australasian Association of Clinical Biochemists Monoclonal Gammopathy Working Group. Pathology 2020; 52 (02) 167-178
  • 16 Roos-Weil D, Giacopelli B, Armand M. et al. Identification of 2 DNA methylation subtypes of Waldenström macroglobulinemia with plasma and memory B-cell features. Blood 2020; 136 (05) 585-595
  • 17 Yang G, Zhou Y, Liu X. et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood 2013; 122 (07) 1222-1232
  • 18 Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep 2014; 6: 97
  • 19 Landgren O, Tageja N. MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenström's Macroglobulinemia. Leukemia 2014; 28 (09) 1799-1803
  • 20 Sewastianik T, Guerrera ML, Adler K. et al. Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Adv 2019; 3 (21) 3360-3374
  • 21 Banerjee M, Huang Y, Joshi S. et al. Platelets endocytose viral particles and are activated via TLR (Toll-like receptor) signaling. Arterioscler Thromb Vasc Biol 2020; 40 (07) 1635-1650
  • 22 Hunter ZR, Xu L, Yang G. et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014; 123 (11) 1637-1646
  • 23 Poulain S, Roumier C, Venet-Caillault A. et al. Genomic landscape of CXCR4 mutations in Waldenstrom Macroglobulinemia. Clin Cancer Res 2016; 22 (06) 1480-1488
  • 24 Treon SP, Tripsas CK, Meid K. et al. Ibrutinib in previously treated Waldenström's macroglobulinemia. N Engl J Med 2015; 372 (15) 1430-1440
  • 25 Dotta L, Tassone L, Badolato R. Clinical and genetic features of warts, hypogammaglobulinemia, infections and myelokathexis (WHIM) syndrome. Curr Mol Med 2011; 11 (04) 317-325
  • 26 Cao Y, Hunter ZR, Liu X. et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's macroglobulinemia. Leukemia 2015; 29 (01) 169-176
  • 27 Roccaro AM, Sacco A, Jimenez C. et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 2014; 123 (26) 4120-4131
  • 28 Waldenström J. Incipient myelomatosis or «essential« hyperglobulinemia with fibrinogenopenia — a new syndrome?. Acta Med Scand 1944; 117: 216-247
  • 29 Gertz MA, Merlini G, Treon SP. Amyloidosis and Waldenström's macroglobulinemia. Hematology (Am Soc Hematol Educ Program) 2004; •••: 257-282
  • 30 Merchionne F, Procaccio P, Dammacco F. Waldenström's macroglobulinemia. An overview of its clinical, biochemical, immunological and therapeutic features and our series of 121 patients collected in a single center. Crit Rev Oncol Hematol 2011; 80 (01) 87-99
  • 31 Zangari M, Elice F, Fink L, Tricot G. Hemostatic dysfunction in paraproteinemias and amyloidosis. Semin Thromb Hemost 2007; 33 (04) 339-349
  • 32 Buske C, Sadullah S, Kastritis E. et al; European Consortium for Waldenström's Macroglobulinemia. Treatment and outcome patterns in European patients with Waldenström's macroglobulinaemia: a large, observational, retrospective chart review. Lancet Haematol 2018; 5 (07) e299-e309
  • 33 Kuter DJ. Managing thrombocytopenia associated with cancer chemotherapy. Oncology (Williston Park) 2015; 29 (04) 282-294
  • 34 Kolikkat N, Moideen S, Khader A, Mohammed TP, Uvais NA. Waldenstrom's macroglobulinemia: a case report. J Family Med Prim Care 2020; 9 (03) 1768-1771
  • 35 Gardiner EE, Andrews RK. Structure and function of platelet receptors initiating blood clotting. Adv Exp Med Biol 2014; 844: 263-275
  • 36 Mital A. Acquired von Willebrand Syndrome. Adv Clin Exp Med 2016; 25 (06) 1337-1344
  • 37 Federici AB, Rand JH, Bucciarelli P. et al; Subcommittee on von Willebrand Factor. Acquired von Willebrand syndrome: data from an international registry. Thromb Haemost 2000; 84 (02) 345-349
  • 38 Castillo JJ, Gustine JN, Meid K. et al. Low levels of von Willebrand markers associate with high serum IgM levels and improve with response to therapy, in patients with Waldenström macroglobulinaemia. Br J Haematol 2019; 184 (06) 1011-1014
  • 39 Franchini M, Mannucci PM. Acquired von Willebrand syndrome: focused for hematologists. Haematologica 2020; 105 (08) 2032-2037
  • 40 Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl 2005; 11 (12) 1469-1480
  • 41 Abou-Ismail MY, Rodgers GM, Bray PF, Lim MY. Acquired von Willebrand syndrome in monoclonal gammopathy - a scoping review on hemostatic management. Res Pract Thromb Haemost 2021; 5 (02) 356-365
  • 42 Dicke C, Schneppenheim S, Holstein K. et al. Distinct mechanisms account for acquired von Willebrand syndrome in plasma cell dyscrasias. Ann Hematol 2016; 95 (06) 945-957
  • 43 Javadi E, Deng Y, Karniadakis GE, Jamali S. In silico biophysics and hemorheology of blood hyperviscosity syndrome. Biophys J 2021; 120 (13) 2723-2733
  • 44 Stone MJ. Waldenström's macroglobulinemia: hyperviscosity syndrome and cryoglobulinemia. Clin Lymphoma Myeloma 2009; 9 (01) 97-99
  • 45 Gertz MA. Acute hyperviscosity: syndromes and management. Blood 2018; 132 (13) 1379-1385
  • 46 van Breugel HF, de Groot PG, Heethaar RM, Sixma JJ. Role of plasma viscosity in platelet adhesion. Blood 1992; 80 (04) 953-959
  • 47 Castillo JJ, Treon SP. Initial evaluation of the patient with Waldenström macroglobulinemia. Hematol Oncol Clin North Am 2018; 32 (05) 811-820
  • 48 Mayerhofer M, Haushofer A, Kyrle PA. et al. Mechanisms underlying acquired von Willebrand syndrome associated with an IgM paraprotein. Eur J Clin Invest 2009; 39 (09) 833-836
  • 49 McKelvey EM, Kwaan HC. An IgM circulating anticoagulant with factor VIII inhibitory activity. Ann Intern Med 1972; 77 (04) 571-575
  • 50 Castaldi PA, Penny R. A macroglobulin with inhibitory activity against coagulation factor VIII. Blood 1970; 35 (03) 370-376
  • 51 Mazurier C, Parquet-Gernez A, Descamps J, Bauters F, Goudemand M. Acquired von Willebrand's syndrome in the course of Waldenström's disease. Thromb Haemost 1980; 44 (03) 115-118
  • 52 Endo T, Yatomi Y, Amemiya N. et al. Antibody studies of factor VIII inhibitor in a case with Waldenström's macroglobulinemia. Am J Hematol 2000; 63 (03) 145-148
  • 53 Loftus LS, Arnold WN. Acquired hemophilia in a patient with myeloma. West J Med 1994; 160 (02) 173-176
  • 54 Taher A, Abiad R, Uthman I. Coexistence of lupus anticoagulant and acquired haemophilia in a patient with monoclonal gammopathy of unknown significance. Lupus 2003; 12 (11) 854-856
  • 55 Varticovski L, Pick AI, Schattner A, Shoenfeld Y. Anti-platelet and anti-DNA IgM in Waldenström macroglobulinemia and ITP. Am J Hematol 1987; 24 (04) 351-355
  • 56 Owen RG, Lubenko A, Savage J, Parapia LA, Jack AS, Morgan GJ. Autoimmune thrombocytopenia in Waldenström's macroglobulinemia. Am J Hematol 2001; 66 (02) 116-119
  • 57 Zago-Novaretti M, Khuri F, Miller KB, Berkman EM. Waldenström's macroglobulinemia with an IgM paraprotein that is both a cold agglutinin and a cryoglobulin and has a suppressive effect on progenitor cell growth. Transfusion 1994; 34 (10) 910-914
  • 58 Stone MJ, Pascual V. Pathophysiology of Waldenström's macroglobulinemia. Haematologica 2010; 95 (03) 359-364
  • 59 Nicol M, Siguret V, Vergaro G. et al. Thromboembolism and bleeding in systemic amyloidosis: a review. ESC Heart Fail 2022; 9 (01) 11-20
  • 60 Zanwar S, Abeykoon JP, Ansell SM. et al. Primary systemic amyloidosis in patients with Waldenström macroglobulinemia. Leukemia 2019; 33 (03) 790-794
  • 61 Sundaram S, Rathod R. Gastric amyloidosis causing nonvariceal upper gastrointestinal bleeding. ACG Case Rep J 2019; 6 (05) 3-4
  • 62 Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma. N Engl J Med 2001; 344 (25) 1951-1952
  • 63 Mitrani LR, De Los Santos J, Driggin E. et al. Anticoagulation with warfarin compared to novel oral anticoagulants for atrial fibrillation in adults with transthyretin cardiac amyloidosis: comparison of thromboembolic events and major bleeding. Amyloid 2021; 28 (01) 30-34
  • 64 Gamba G, Montani N, Anesi E. et al. Abnormalities in thrombin-antithrombin pathway in AL amyloidosis. Amyloid 1999; 6 (04) 273-277
  • 65 Cowan AJ, Skinner M, Seldin DC. et al. Amyloidosis of the gastrointestinal tract: a 13-year, single-center, referral experience. Haematologica 2013; 98 (01) 141-146
  • 66 Patel G, Hari P, Szabo A. et al. Acquired factor X deficiency in light-chain (AL) amyloidosis is rare and associated with advanced disease. Hematol Oncol Stem Cell Ther 2019; 12 (01) 10-14
  • 67 Hicks SM, Coupland LA, Jahangiri A, Choi PY, Gardiner EE. Novel scientific approaches and future research directions in understanding ITP. Platelets 2020; 31 (03) 315-321
  • 68 Neunert C, Noroozi N, Norman G. et al. Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review. J Thromb Haemost 2015; 13 (03) 457-464
  • 69 Vinholt PJ, Hvas AM, Nybo M. An overview of platelet indices and methods for evaluating platelet function in thrombocytopenic patients. Eur J Haematol 2014; 92 (05) 367-376
  • 70 Hansen CE, Qiu Y, McCarty OJT, Lam WA. Platelet mechanotransduction. Annu Rev Biomed Eng 2018; 20: 253-275
  • 71 Ruggeri ZM. Platelet adhesion under flow. Microcirculation 2009; 16 (01) 58-83
  • 72 Andrews RK, Gardiner EE, Shen Y, Berndt MC. Platelet interactions in thrombosis. IUBMB Life 2004; 56 (01) 13-18
  • 73 Muthiah K, Connor D, Ly K. et al. Longitudinal changes in hemostatic parameters and reduced pulsatility contribute to non-surgical bleeding in patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant 2016; 35 (06) 743-751
  • 74 Vulliamy P, Montague SJ, Gillespie S. et al. Loss of GPVI and GPIbα contributes to trauma-induced platelet dysfunction in severely injured patients. Blood Adv 2020; 4 (12) 2623-2630
  • 75 Qiao J, Schoenwaelder SM, Mason KD. et al. Low adhesion receptor levels on circulating platelets in patients with lymphoproliferative diseases before receiving Navitoclax (ABT-263). Blood 2013; 121 (08) 1479-1481
  • 76 Kamel S, Horton L, Ysebaert L. et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia 2015; 29 (04) 783-787
  • 77 Thomas S, Krishnan A. Platelet heterogeneity in myeloproliferative neoplasms. Arterioscler Thromb Vasc Biol 2021; 41 (11) 2661-2670
  • 78 Kaplan ZS, Zarpellon A, Alwis I. et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015; 6: 7835
  • 79 Mammadova-Bach E, Ollivier V, Loyau S. et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood 2015; 126 (05) 683-691
  • 80 Dumas JJ, Kumar R, Seehra J, Somers WS, Mosyak L. Crystal structure of the GpIbalpha-thrombin complex essential for platelet aggregation. Science 2003; 301 (5630): 222-226
  • 81 Byzova TV, Plow EF. Networking in the hemostatic system. Integrin alphaiibbeta3 binds prothrombin and influences its activation. J Biol Chem 1997; 272 (43) 27183-27188
  • 82 Haider S, Latif T, Hochhausler A, Lucas F, Abdel Karim N. Waldenstrom's macroglobulinemia and peripheral neuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes with a bleeding diathesis and rash. Case Rep Oncol Med 2013; 2013: 890864
  • 83 Zangari M, Elice F, Tricot G, Fink L. Bleeding disorders associated with cancer dysproteinemias. Cancer Treat Res 2009; 148: 295-304
  • 84 Luu S, Gardiner EE, Andrews RK. Bone marrow defects and platelet function: a focus on MDS and CLL. Cancers (Basel) 2018; 10 (05) 147
  • 85 Castillo JJ, Advani RH, Branagan AR. et al. Consensus treatment recommendations from the tenth International Workshop for Waldenström Macroglobulinaemia. Lancet Haematol 2020; 7 (11) e827-e837
  • 86 Salles G, Barrett M, Foà R. et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther 2017; 34 (10) 2232-2273
  • 87 Ghobrial IM, Fonseca R, Greipp PR. et al; Eastern Cooperative Oncology Group. Initial immunoglobulin M ‘flare’ after rituximab therapy in patients diagnosed with Waldenstrom macroglobulinemia: an Eastern Cooperative Oncology Group Study. Cancer 2004; 101 (11) 2593-2598
  • 88 Ram R, Bonstein L, Gafter-Gvili A, Ben-Bassat I, Shpilberg O, Raanani P. Rituximab-associated acute thrombocytopenia: an under-diagnosed phenomenon. Am J Hematol 2009; 84 (04) 247-250
  • 89 Cheson BD, Leoni L. Bendamustine: mechanism of action and clinical data. Clin Adv Hematol Oncol 2011; 9 (08, Suppl 19): 1-11
  • 90 Robak E, Robak T. Bruton's kinase inhibitors for the treatment of immunological diseases: current status and perspectives. J Clin Med 2022; 11 (10) 11
  • 91 von Hundelshausen P, Siess W. Bleeding by Bruton tyrosine kinase-inhibitors: dependency on drug type and disease. Cancers (Basel) 2021; 13 (05) 13
  • 92 Liu J, Fitzgerald ME, Berndt MC, Jackson CW, Gartner TK. Bruton tyrosine kinase is essential for botrocetin/VWF-induced signaling and GPIb-dependent thrombus formation in vivo. Blood 2006; 108 (08) 2596-2603
  • 93 Li Z, Delaney MK, O'Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010; 30 (12) 2341-2349
  • 94 Atkinson BT, Ellmeier W, Watson SP. Tec regulates platelet activation by GPVI in the absence of Btk. Blood 2003; 102 (10) 3592-3599
  • 95 Burger JA, Buggy JJ. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk Lymphoma 2013; 54 (11) 2385-2391
  • 96 Shatzel JJ, Olson SR, Tao DL, McCarty OJT, Danilov AV, DeLoughery TG. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost 2017; 15 (05) 835-847
  • 97 Levade M, David E, Garcia C. et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood 2014; 124 (26) 3991-3995
  • 98 Bye AP, Unsworth AJ, Desborough MJ. et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv 2017; 1 (26) 2610-2623
  • 99 Tullemans BME, Heemskerk JWM, Kuijpers MJE. Acquired platelet antagonism: off-target antiplatelet effects of malignancy treatment with tyrosine kinase inhibitors. J Thromb Haemost 2018; 16 (09) 1686-1699
  • 100 Dobie G, Kuriri FA, Omar MMA. et al. Ibrutinib, but not zanubrutinib, induces platelet receptor shedding of GPIb-IX-V complex and integrin αIIbβ3 in mice and humans. Blood Adv 2019; 3 (24) 4298-4311
  • 101 Brown JR, Moslehi J, Ewer MS. et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br J Haematol 2019; 184 (04) 558-569
  • 102 Castillo JJ, Gustine JN, Meid K, Dubeau T, Severns P, Treon SP. Ibrutinib withdrawal symptoms in patients with Waldenström macroglobulinemia. Haematologica 2018; 103 (07) e307-e310
  • 103 Gustine JN, Meid K, Dubeau T. et al. Ibrutinib discontinuation in Waldenström macroglobulinemia: etiologies, outcomes, and IgM rebound. Am J Hematol 2018; 93 (04) 511-517
  • 104 Gustine JN, Meid K, Dubeau TE, Treon SP, Castillo JJ. Atrial fibrillation associated with ibrutinib in Waldenström macroglobulinemia. Am J Hematol 2016; 91 (06) E312-E313
  • 105 Ali N, Malik F, Jafri SIM, Naglak M, Sundermeyer M, Pickens PV. Analysis of efficacy and tolerability of Bruton tyrosine kinase inhibitor ibrutinib in various B-cell malignancies in the general community: a single-center experience. Clin Lymphoma Myeloma Leuk 2017; 17S: S53-S61
  • 106 Dimopoulos MA, Tedeschi A, Trotman J. et al; iNNOVATE Study Group and the European Consortium for Waldenström's Macroglobulinemia. Phase 3 trial of ibrutinib plus rituximab in Waldenström's macroglobulinemia. N Engl J Med 2018; 378 (25) 2399-2410
  • 107 Dimopoulos MA, Trotman J, Tedeschi A. et al; iNNOVATE Study Group and the European Consortium for Waldenström's Macroglobulinemia. Ibrutinib for patients with rituximab-refractory Waldenström's macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol 2017; 18 (02) 241-250
  • 108 Treon SP, Gustine J, Meid K. et al. Ibrutinib monotherapy in symptomatic, treatment-naive patients with Waldenstrom macroglobulinemia. J Clin Oncol 2018; 36 (27) 2755-2761
  • 109 Fradley MG, Gliksman M, Emole J. et al. Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy. Am J Cardiol 2019; 124 (04) 539-544
  • 110 Abeykoon JP, Zanwar S, Ansell SM. et al. Ibrutinib monotherapy outside of clinical trial setting in Waldenström macroglobulinaemia: practice patterns, toxicities and outcomes. Br J Haematol 2020; 188 (03) 394-403
  • 111 Favaloro EJ, Funk DM, Lippi G. Pre-analytical variables in coagulation testing associated with diagnostic errors in hemostasis. Lab Med 2012; 43: 1-10
  • 112 Sharma R, Haberichter SL. New advances in the diagnosis of von Willebrand disease. Hematology (Am Soc Hematol Educ Program) 2019; 2019 (01) 596-600
  • 113 Favaloro EJ, Oliver S, Mohammed S, Vong R. Comparative assessment of von Willebrand factor multimers vs activity for von Willebrand disease using modern contemporary methodologies. Haemophilia 2020; 26 (03) 503-512
  • 114 Laporte P, Tuffigo M, Ryman A. et al. HemosIL VWF:GPIbR assay has a greater sensitivity than VWF:RCo technique to detect acquired von Willebrand syndrome in myeloproliferative neoplasms. Thromb Haemost 2022; 122 (10) 1673-1682
  • 115 Lim HY, Donnan G, Nandurkar H, Ho P. Global coagulation assays in hypercoagulable states. J Thromb Thrombolysis 2022; 54 (01) 132-144
  • 116 Ninivaggi M, de Laat-Kremers R, Tripodi A. et al. Recommendations for the measurement of thrombin generation: communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J Thromb Haemost 2021; 19 (05) 1372-1378
  • 117 de Breet CPDM, Zwaveling S, Vries MJA. et al. Thrombin generation as a method to identify the risk of bleeding in high clinical-risk patients using dual antiplatelet therapy. Front Cardiovasc Med 2021; 8: 679934
  • 118 Beltrán-Miranda CP, Khan A, Jaloma-Cruz AR, Laffan MA. Thrombin generation and phenotypic correlation in haemophilia A. Haemophilia 2005; 11 (04) 326-334
  • 119 Tripodi A, Martinelli I, Chantarangkul V, Battaglioli T, Clerici M, Mannucci PM. The endogenous thrombin potential and the risk of venous thromboembolism. Thromb Res 2007; 121 (03) 353-359
  • 120 Wan J, Konings J, de Laat B, Hackeng TM, Roest M. Added value of blood cells in thrombin generation testing. Thromb Haemost 2021; 121 (12) 1574-1587
  • 121 Favaloro EJ, Bonar R. An update on quality control for the PFA-100/PFA-200. Platelets 2018; 29 (06) 622-627
  • 122 Vinholt PJ. The role of platelets in bleeding in patients with thrombocytopenia and hematological disease. Clin Chem Lab Med 2019; 57 (12) 1808-1817
  • 123 Paniccia R, Priora R, Liotta AA, Abbate R. Platelet function tests: a comparative review. Vasc Health Risk Manag 2015; 11: 133-148
  • 124 Moenen FCJI, Vries MJA, Nelemans PJ. et al. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2019; 30 (01) 81-87
  • 125 Walsh M, Kwaan H, McCauley R. et al. Viscoelastic testing in oncology patients (including for the diagnosis of fibrinolysis): review of existing evidence, technology comparison, and clinical utility. Transfusion 2020; 60 (Suppl. 06) S86-S100
  • 126 Kay AB, Morris DS, Collingridge DS, Majercik S. Platelet dysfunction on thromboelastogram is associated with severity of blunt traumatic brain injury. Am J Surg 2019; 218 (06) 1134-1137
  • 127 Al-Tamimi M, Arthur JF, Gardiner E, Andrews RK. Focusing on plasma glycoprotein VI. Thromb Haemost 2012; 107 (04) 648-655
  • 128 Lui M, Gardiner EE, Arthur JF. et al. Novel stenotic microchannels to study thrombus formation in shear gradients: influence of shear forces and human platelet-related factors. Int J Mol Sci 2019; 20 (12) 20
  • 129 Mangin PH, Gardiner EE, Nesbitt WS. et al; Subcommittee on Biorheology. In vitro flow based systems to study platelet function and thrombus formation: recommendations for standardization: Communication from the SSC on Biorheology of the ISTH. J Thromb Haemost 2020; 18 (03) 748-752
  • 130 de Witt SM, Swieringa F, Cavill R. et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun 2014; 5: 4257
  • 131 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
  • 132 Chatterjee M, Rath D, Gawaz M. Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans 2015; 43 (04) 720-726
  • 133 Hivert B, Caron C, Petit S. et al. Clinical and prognostic implications of low or high level of von Willebrand factor in patients with Waldenstrom macroglobulinemia. Blood 2012; 120 (16) 3214-3221
  • 134 Gavriatopoulou M, Terpos E, Ntanasis-Stathopoulos I. et al. Elevated vWF antigen serum levels are associated with poor prognosis, and decreased circulating ADAMTS-13 antigen levels are associated with increased IgM levels and features of WM but not increased vWF levels in patients with symptomatic WM. Clin Lymphoma Myeloma Leuk 2019; 19 (01) 23-28
  • 135 Stockschlaeder M, Schneppenheim R, Budde U. Update on von Willebrand factor multimers: focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul Fibrinolysis 2014; 25 (03) 206-216
  • 136 Shahani T, Covens K, Lavend'homme R. et al. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 2014; 12 (01) 36-42
  • 137 Federici AB. The factor VIII/von Willebrand factor complex: basic and clinical issues. Haematologica 2003; 88 (06) EREP02
  • 138 Saraya AK, Kasturi J, Kishan R. A study of haemostasis in macroglobulinaemia. Acta Haematol 1972; 47: 33-42
  • 139 Kasturi J, Saraya AK. Platelet functions in dysproteinaemia. Acta Haematol 1978; 59 (02) 104-113
  • 140 Camera M, Brambilla M, Toschi V, Tremoli E. Tissue factor expression on platelets is a dynamic event. Blood 2010; 116 (23) 5076-5077
  • 141 Siddiqui FA, Desai H, Amirkhosravi A, Amaya M, Francis JL. The presence and release of tissue factor from human platelets. Platelets 2002; 13 (04) 247-253
  • 142 Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev Biol 2021; 9: 630942
  • 143 Kaptein A, de Bruin G, Emmelot-van Hoek M. et al. Potency and selectivity of BTK inhibitors in clinical development for B-cell malignancies. Blood 2018; 132: 1871-1871
  • 144 Brown JR. Ibrutinib in chronic lymphocytic leukemia and B cell malignancies. Leuk Lymphoma 2014; 55 (02) 263-269
  • 145 Perkins HA, MacKenzie MR, Fudenberg HH. Hemostatic defects in dysproteinemias. Blood 1970; 35 (05) 695-707
  • 146 Merlini G, Baldini L, Broglia C. et al. Prognostic factors in symptomatic Waldenstrom's macroglobulinemia. Semin Oncol 2003; 30 (02) 211-215