Synlett 2023; 34(06): 663-666
DOI: 10.1055/a-1938-1243
cluster
Chemical Synthesis and Catalysis in India

Organocatalytic Asymmetric Oxa-Michael–Michael Reaction of 3-Aryl-2-Nitroprop-2-Enols with Unsaturated Pyrazolones: Synthesis of Spirotetrahydropyranopyrazolones

Nimisha Bania
,
Dipankar Barman
,
This work was supported by MHRD-FAST programme (file no 22-3/2016-TS.II/TC) and DST-SERB (file no CRG/2018/001154). We also thank the Department of Biotechnology (DBT), Govt. of India (project no. BT/COE/34/SP28408/2018) for the provision of instrumental facilities.


Abstract

An organocatalytic asymmetric oxa-Michael–Michael reaction of 3-aryl-2-nitroprop-2-enols with alkylidene pyrazolones has been developed. This report describes the first use of a 3-aryl-2-nitroprop-2-enol as an O-nucleophile in enantioselective catalysis. With 10 mol% of a quinine-derived squaramide catalyst, a variety of spirotetrahydropyranopyrazolones were obtained in moderate yields, excellent diastereomeric ratios, and high to excellent enantioselectivities under mild reaction conditions.

Supporting Information



Publication History

Received: 30 May 2021

Accepted after revision: 07 September 2021

Accepted Manuscript online:
07 September 2022

Article published online:
28 September 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Nising CF, Bräse S. Chem. Soc. Rev. 2008; 37: 1218
    • 1b Nising CF, Bräse S. Chem. Soc. Rev. 2012; 41: 988
    • 1c Hu J, Bian M, Ding H. Tetrahedron Lett. 2016; 57: 5519

      For reviews, see:
    • 2a Wang Y, Du D.-M. Org. Chem. Front. 2020; 7: 3266
    • 2b Ahmad T, Ullah N. Org. Chem. Front. 2021; 8: 1329
    • 2c Biswas A, Ghosh A, Shankdhar R, Chatterjee I. Asian J. Org. Chem. 2021; 1345

      For selected recent examples, see:
    • 3a Zhu Y, Li X, Chen Q, Su J, Jia F, Qiu S, Ma M, Sun Q, Yan W, Wang K, Wang R. Org. Lett. 2015; 17: 3826
    • 3b Saha P, Biswas A, Molleti N, Singh VK. J. Org. Chem. 2015; 80: 11115
    • 3c Zheng W, Zhang J, Liu S, Yu C, Miao Z. RSC Adv. 2015; 5: 91108
    • 3d Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
    • 3e Tang C.-K, Feng K.-X, Xia A.-B, Li C, Zheng Y.-Y, Xu Z.-Y, Xu D.-Q. RSC Adv. 2018; 8: 3095
    • 3f Roy S, Pradhan S, Kumar K, Chatterjee I. Org. Chem. Front. 2020; 7: 1388

    • For a review, see:
    • 3g Dalpozzo R, Mancuso R. Symmetry 2019; 11: 1510
    • 4a Asano K, Matsubara S. Org. Lett. 2012; 14: 1620
    • 4b Liu Y, Jun A, Paladhi S, Song C.-E, Yan H. J. Am. Chem. Soc. 2016; 138: 16486
    • 4c Mondal B, Maity R, Pan SC. J. Org. Chem. 2018; 83: 8645
    • 4d Mondal B, Pan SC. Adv. Synth. Catal. 2018; 360: 4348
    • 4e Mondal B, Balha M, Pan SC. Asian J. Org. Chem. 2018; 7: 1788
  • 5 McGarraugh PG, Johnston RC, Martínez-Muñoz A, Cheong PH.-Y, Brenner-Moyer SE. Chem. Eur. J. 2012; 18: 10742
  • 6 Corbett MT, Johnson JS. Chem. Sci. 2013; 4: 2828
    • 7a Orue A, Uria U, Roca-López D, Delso I, Reyes E, Carrillo L, Merino P, Vicario JL. Chem. Sci. 2017; 8: 2904
    • 7b Reyes E, Talavera G, Vicario JL, Badía D, Carrillo L. Angew. Chem. Int. Ed. 2009; 48: 5701
    • 8a Chandrasekhar S, Mallikarjun K, Pavankumarreddy G, Rao KV, Jagadeesh B. Chem. Commun. 2009; 4985
    • 8b Wang Y, Zhu S, Ma D. Org. Lett. 2011; 13: 1602
    • 8c Talavera G, Reyes E, Vicario JL, Carrillo L. Angew. Chem. Int. Ed. 2012; 51: 4104
    • 8d Parra A, Reboredo S, Alemán J. Angew. Chem. Int. Ed. 2012; 51: 9734
    • 8e Hong B.-C, Lan D.-J, Dange NS, Lee G.-H, Liao J.-H. Eur. J. Org. Chem. 2013; 2472
    • 8f Cruz Cruz D, Mose R, Villegas Gómez C, Torbensen SV, Larsen MS, Jørgensen KA. Chem. Eur. J. 2014; 20: 11331
    • 8g Urbanietz G, Atodiresei I, Enders D. Synthesis 2014; 46: 1261
    • 8h Parellaa R, Jakkampudi S, Arman H, Zhao JC.-G. Adv. Synth. Catal. 2019; 361: 208
    • 8i Akula PS, Wang Y.-J, Hong B.-C, Lee G.-H, Chein S.-Y. Org. Lett. 2021; 23: 4688
  • 9 For an achiral noncatalytic reaction, see: Gudise VB, Settipalli PC, Reddy EK, Anwar S. Eur. J. Org. Chem. 2019; 2234
    • 10a Chande MS, Barve PA, Suryanarayan V. J. Heterocycl. Chem. 2007; 44: 49
    • 10b Schlemminger I, Schmidt B, Flockerzi D, Tenor H, Zitt C, Hatzelmann A, Marx D, Braun C, Kuelzer R, Heuser A, Kley H.-P, Sterk GJ. WO 2010055083, 2008
    • 10c Schmidt B, Scheufler C, Volz J, Feth MP, Hummel R.-P, Hatzelmann A, Zitt C, Wohlsen A, Marx D, Kley H.-P, Ockert D, Heuser A, Christians JA. M, Sterk GJ, Menge WM. P. B. WO 2008138939, 2010

      For selected recent examples, see:
    • 11a Mondal S, Mukherjee S, Yetra SR, Gonnade RG, Biju AT. Org. Lett. 2017; 19: 4367
    • 11b Yang W, Sun W, Zhang C, Wang Q, Guo Z, Mao B, Liao J, Guo H. ACS Catal. 2017; 7: 3142
    • 11c Leng H.-J, Li Q.-Z, Zeng R, Dai Q.-S, Zhu H.-P, Liu Y, Huang W, Han B, Li J.-L. Adv. Synth. Catal. 2018; 360: 229
    • 11d Tang C.-K, Zhou Z.-Y, Xia A.-B, Bai L, Liu J, Xu D.-Q, Xu Z.-Y. Org. Lett. 2018; 20: 5840
    • 11e Meninno S, Mazzanti A, Lattanzi A. Adv. Synth. Catal. 2019; 361: 79
    • 11f Lu H, Zhang HX, Tan C.-Y, Liu J.-Y, Wei H, Xu P.-F. J. Org. Chem. 2019; 84: 10292
    • 11g Tan CY, Lu H, Zhang J.-L, Liu J.-Y, Xu P.-F. J. Org. Chem. 2020; 85: 594

    • For reviews, see:
    • 11h Chauhan P, Mahajan S, Enders D. Chem. Commun. 2015; 51: 12890
    • 11i Liu S.-Y, Bao X.-Z, Wang B.-M. Chem. Commun. 2018; 54: 11515
    • 11j Xie X, Xiang L, Peng C, Han B. Chem. Rec. 2019; 19: 2209

      For reviews on asymmetric synthesis of spiro compounds, see:
    • 12a Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
    • 12b Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 12c Nakazaki A, Kobayashi S. Synlett 2012; 23: 1427

      For initial report, see:
    • 13a Malerich J, Hagihara K, Rawal V. J. Am. Chem. Soc. 2008; 130: 14416 . For reviews, see
    • 13b Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 13c Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
    • 13d Rouf A, Tanyeli C. Curr. Org. Chem. 2016; 20: 2996
    • 13e Zhao B.-L, Li J.-H, Du A.-M. Chem. Rec. 2017; 17: 994
  • 14 4-Methyl-9-nitro-2,6,10-triphenyl-7-oxa-2,3-diazaspiro[4.5]dec-3-en-1-one (3a); Typical ProcedureAn oven-dried round-bottomed flask was charged with pyrazolone 1 (17.9 mg, 0.1 mmol), enol 2 (28.8mg, 0.11 mmol), and catalyst IV (10 mol%). CH2Cl2 (0.4 mL) was added and the mixture was stirred at rt for 1 d until the reaction was complete (TLC). The mixture was then concentrated and purified directly by column chromatography [silica gel, hexane–EtOAc (8%)] to give a yellowish sticky solid; yield 24.3 mg (55%, 98% ee).HPLC [Chiralpak IF, hexane–i-PrOH (85:15), 1.0 mL/min, λ = 220 nm]: t major = 20.99 min, t minor = 17.90 min. 1H NMR (500 MHz, CDCl3): δ = 7.27 (t, J = 4.6 Hz, 4 H), 7.26–7.22 (m, 5 H), 7.19 (t, J = 8.0 Hz, 3 H), 7.11 (d, J = 8.0 Hz, 2 H), 7.07 (t, J = 7.4 Hz, 1 H), 5.68 (dt, J = 12.3, 7.2 Hz, 1 H), 4.77 (s, 1 H), 4.69–4.60 (m, 3 H), 2.33 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 171.7, 156.5, 136.9, 135.0, 133.0, 129.3, 129.0, 128.9, 128.7, 128.4, 127.6, 126.2, 125.8, 120.1, 81.7, 78.7, 68.4, 64.1, 45.9, 16.96. HRMS (ESI): m/z [M + H]+ calcd for C26H24N3O4: 442.1761; found: 442.1750.