Die Wirbelsäule 2023; 07(02): 89-93
DOI: 10.1055/a-1947-7131
Übersicht

Einfluss von verschieden Dekompressionstechniken in der lumbalen Wirbelsäule auf den Bewegungsumfang

Influence of different decompression techniques in the lumbar spine on range of motion
Sara Lener
1   Universitätsklinik für Neurochirurgie, Medizinische Universität Innsbruck, Innsbruck, Österreich
,
Sebastian Hartmann
1   Universitätsklinik für Neurochirurgie, Medizinische Universität Innsbruck, Innsbruck, Österreich
,
Werner Schmölz
2   Universitätsklinik für Orthopädie und Traumatologie, Medizinische Universität Innsbruck, Innsbruck, Österreich
› Author Affiliations

Zusammenfassung

Die lumbale Spinalkanalstenose (LSS) ist eine häufige Wirbelsäulenerkrankung des älteren Patienten mit steigender sozioökonomischer Bedeutung. Derzeit gelten die uni- oder bilaterale Dekompression und die unilaterale Dekompression mit Unterschneidung (auch „undercutting“ oder „over the top“ Dekompression) von der ipsilateralen Zugangsseite zur kontralateralen Seite in Europa als Goldstandard zur Behandlung der lumbalen Spinalkanalstenose. Eine ausgedehnte Dekompression nervaler Strukturen birgt jedoch einige bekannte Nachteile, wie z.B. das Risiko einer sekundären lumbalen Instabilität. In den hier präsentierten Untersuchungen war es das Ziel, die Zunahme des segmentalen Bewegungsumfangs in Abhängigkeit vom Ausmaß einer Dekompression zu untersuchen. An 10 humanen „fresh-frozen“ Lendenwirbelsäulen wurden 4 sequenzielle, und in ihrem Umfang zunehmende Dekompressionen durchgeführt. Nach jeder erfolgten Dekompression wurden die Präparate in einem Wirbelsäulensimulator in Flexion-Extension, lateraler Beugung und axialer Rotation untersucht. Zusammengefasst konnte gezeigt werden, dass die unilaterale Dekompression, als auch die unilaterale Dekompression mit kontralateraler Unterschneidung zu keiner wesentlichen Zunahme des Bewegungsumfangs führte, wohingegen die Laminektomie einen deutlichen Anstieg des Bewegungsumfanges, insbesondere bei axialer Rotation, aufwies. Dies wiederum stellt ein erhöhtes Risiko für die Entstehung einer sekundären lumbalen Instabilität dar. Das aktuelle Fehlen klarer evidenzbasierter Leitlinien für die optimale chirurgische Therapie der lumbalen Spinalkanalstenose, ob mit oder ohne lumbaler Fusion, kann zur Über- oder Unterbehandlung bestimmter Patient:innen führen. Ob die statistisch signifikante Zunahme des Bewegungsumfangs auch einen Einfluss auf das klinische Ergebnis hat, und wie gefährdete Patient:innen identifiziert werden können sollte in weiteren Studien untersucht werden.

Abstract

Lumbar spinal stenosis represents a common condition and has a growing socioeconomic importance. Currently, unilateral or bilateral decompression and unilateral decompression with undercutting to the contralateral side are considered the gold standard for its treatment. However, extensive decompression of nerve structures has some known disadvantages, such as the risk of secondary lumbar instability. In the presented studies, the aim was to investigate the increase in segmental range of motion as a function of the extent of decompression. 4 sequential, and increasing in extent, decompressions were performed on 10 specimens of human "fresh-frozen" lumbar spines. After each performed decompression, each specimen was tested in a six-degree-of-freedom spine tester, examining range of motion in flexion-extension, lateral flexion, and axial rotation. In summary, it was shown that unilateral decompression, as well as unilateral decompression with contralateral undercutting, did not result in a significant increase in range of motion, whereas laminectomy showed a significant increase in range of motion, especially in axial rotation. This in turn represents an increased risk for the development of secondary lumbar instability. The current lack of clear evidence-based guidelines for the optimal surgical treatment of lumbar spinal stenosis may lead to over- or under-treatment of certain patients. Whether the statistically significant increase in range of motion also has an impact on clinical outcome and how to identify patients at risk should be investigated in further studies.



Publication History

Article published online:
02 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Abbas J, Hamoud K, May H. et al. Socioeconomic and physical characteristics of individuals with degenerative lumbar spinal stenosis. Spine 2013; 38: E554-61
  • 2 Jarrett MS, Orlando JF, Grimmer-Somers K. The effectiveness of land based exercise compared to decompressive surgery in the management of lumbar spinal-canal stenosis: a systematic review. BMC Musculoskelet Disord 2012; 13: 30 DOI: 10.1186/1471-2474-13-30. (PMID: 22369653)
  • 3 Weinstein JN, Tosteson TD, Lurie JD. et al. Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med 2008; 358: 794-810 DOI: 10.1056/NEJMoa0707136. (PMID: 18287602)
  • 4 Rosenberg NJ. Degenerative spondylolisthesis: surgical treatment. Clin Orthop Relat Res 1975; 117: 112-20
  • 5 Herkowitz HN, Kurz LT. Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. J Bone Joint Surg Am 1991; 73: 802-8
  • 6 Bridwell KH, Sedgewick TA, O’Brien MF. et al. The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J Spinal Disord 1993; 6: 461-72
  • 7 Thomé C, Zevgaridis D, Leheta O. et al. Outcome after less-invasive decompression of lumbar spinal stenosis: a randomized comparison of unilateral laminotomy, bilateral laminotomy, and laminectomy. J Neurosurg Spine 2005; 3: 129-41 DOI: 10.3171/spi.2005.3.2.0129. (PMID: 16370302)
  • 8 Zhang C, Chen L, Li J. et al. Should Posterior Midline Structures Be Preserved in Decompression Surgery for Lumbar Spinal Stenosis?: A Systematic Review and Meta-analysis. Clin Spine Surg 2021; 35: 341-349
  • 9 Postacchini F, Cinotti G, Perugia D. et al. The surgical treatment of central lumbar stenosis. Multiple laminotomy compared with total laminectomy. J Bone Joint Surg Br 1993; 75: 386-92
  • 10 Quint U, Wilke HJ, Löer F. et al. Funktionelle Folgen operativer Dekompressionen am lumbalen Bewegungssegment--eine biomechanische Studie in vitro [Functional sequelae of surgical decompression of the lumbar spine--a biomechanical study in vitro]. Z Orthop Ihre Grenzgeb 1998; 136: 350-7
  • 11 Delank KS, Gercek E, Kuhn S. et al. How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Arch Orthop Trauma Surg 2010; 130: 285-92
  • 12 Hartmann F, Janssen C, Böhm S. et al. Biomechanical effect of graded minimal-invasive decompression procedures on lumbar spinal stability. Arch Orthop Trauma Surg 2012; 132: 1233-9 DOI: 10.1007/s00402-012-1543-2. (PMID: 22592915)
  • 13 Costa F, Ottardi C, Volkheimer D. et al. Bone-Preserving Decompression Procedures Have a Minor Effect on the Flexibility of the Lumbar Spine. J Korean Neurosurg Soc 2018; 61: 680-688
  • 14 Lener S, Schmölz W, Abramovic A. et al. The effect of various options for decompression of degenerated lumbar spine motion segments on the range of motion: a biomechanical in vitro study. Eur Spine J 2023; DOI: 10.1007/s00586-023-07587-7.
  • 15 Ishimoto Y, Yoshimura N, Muraki S. et al. Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: the Wakayama Spine Study. Osteoarthritis Cartilage 2012; 20: 1103-8
  • 16 Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 1998; 7: 148-54 DOI: 10.1007/s005860050045.
  • 17 Smith ZA, Vastardis GA, Carandang G. et al. Biomechanical effects of a unilateral approach to minimally invasive lumbar decompression. PLoS One 2014; 9: e92611 DOI: 10.1371/journal.pone.0092611. (PMID: 24658010)
  • 18 Grunert P, Reyes PM, Newcomb AG. et al. Biomechanical Evaluation of Lumbar Decompression Adjacent to Instrumented Segments. Neurosurgery 2016; 79: 895-904 DOI: 10.1227/NEU.0000000000001419. (PMID: 27580478)
  • 19 Kalichman L, Suri P, Guermazi A. et al. Facet orientation and tropism: associations with facet joint osteoarthritis and degeneratives. Spine (Phila Pa 1976) 2009; 34: E579-85
  • 20 Simmonds AM, Rampersaud YR, Dvorak MF. et al. Defining the inherent stability of degenerative spondylolisthesis: A systematic review. J Neurosurg Spine 2015; 23: 178-89 DOI: 10.3171/2014.11.SPINE1426. (PMID: 25978079)
  • 21 Urakawa H, Jones T, Samuel A. et al. The necessity and risk factors of subsequent fusion after decompression alone for lumbar spinal stenosis with lumbar spondylolisthesis: 5 years follow-up in two different large populations. Spine J 2020; 20: 1566-72
  • 22 Johnsson KE, Redlund-Johnell I, Udén A. et al. Preoperative and postoperative instability in lumbar spinal stenosis. Spine (Phila Pa 1976) 1989; 14: 591-3 DOI: 10.1097/00007632-198906000-00008.
  • 23 Resnick DK, Choudhri TF, Dailey AT. et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: fusion in patients with stenosis and spondylolisthesis. J Neurosurg Spine 2005; 2: 679-85