Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50(05): 323-332
DOI: 10.1055/a-1950-7975

Entzündungs- und Nekrosesyndrom des Schweins (SINS) – eine Übersicht

Swine Inflammation and Necrosis Syndrome (SINS) – a review
Gerald Reiner
Klinikum Veterinärmedizin, Justus-Liebig-Universität Gießen
› Author Affiliations


Entzündungen und Teilverluste des Schwanzes treten in hoher Frequenz auf und müssen bekämpft werden, wenn das Tierwohl beim Schwein verbessert werden soll. Dabei greift die alleinige Berücksichtigung des Schwanzbeißens zu kurz. Entzündungen und Nekrosen des Schwanzes treten regelmäßig auch ohne Zutun anderer Schweine auf. Der Nachweis entsprechender Veränderungen bereits zum Zeitpunkt der Geburt, das gehäuft synchrone Auftreten an so verschiedenen Körperlokalisationen wie Schwanz, Ohren, Zitzen, Klauen und anderen Partien, sowie der pathohistologische Nachweis Blutgefäß-assoziierter Veränderungen sprechen für eine primär endogene Ursache und ein Syndrom, auch wenn die Symptomatik mit Umweltfaktoren interagiert. Die Veränderungen können bei Saug- und Absatzferkeln sowie in der Mast beobachtet werden. Die Verbesserung der Umwelt kann zu erheblicher Reduktion von Entzündungen und Nekrosen führen. Gleichzeitig zeigen sich erhebliche genetische Effekte der Eber und Sauen. Der vorliegende Übersichtsartikel beleuchtet alle bislang bekannten Facetten von SINS (Swine Inflammation and Necrosis Syndrome) und gibt einen Einblick in die Eckpunkte der Pathogenese. Das Bewusstsein für ein neues und vom Schwanzbeißen abzugrenzendes Krankheitsbild soll einen Beitrag zu dessen Bekämpfung und somit zur Steigerung des Tierwohls beim Schwein leisten.


Inflammation and partial loss of the tail occur with high frequency in pigs and must be combated if animal welfare is to be improved. In this context, consideration of tail biting as sole explanation fails to go far enough. Inflammation and necrosis of the tail occur regularly even without the intervention of other pigs. The evidence of such alterations already at the time of birth, the clustered synchronous occurrence on different parts of the body such as the tail, ears, teats, claws, amongst others as well as the pathohistological evidence of blood vessel-associated changes advocate a primarily endogenous cause bearing a syndromic character even if the symptomatology interacts with environmental factors. Alterations may be observed in suckling and weaning piglets as well as in fatteners. Environmental improvement may lead to a significantly reduced symptomatology. At the same time, genetic effects of boar and sow have been demonstrated. This review article highlights all facets of the syndrome known to date and provides an insight into the key points of the pathogenesis. The awareness of a new clinical syndrome that must be distinguished from tail biting will afford a contribution to combating this entity and thus increasing animal welfare in swine.

Publication History

Received: 22 February 2022

Accepted: 31 May 2022

Article published online:
02 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 EFSA. Panel on Animal Health and Welfare (AHAW). Statement on the use of animal-based measures to assess the welfare of animals. EFSA J 2012; 10: 2767
  • 2 EFSA. Panel on Animal Health and Welfare (AHAW). Scientific Opinion concerning a multifactorial approach on the use of animal and non-animal-based measures to assess the welfare of pigs. EFSA J 2014; 12: 3702
  • 3 Nannoni E, Sardi L. Vitali. et al. Effects of different enrichment devices on some welfare indicators of post-weaned undocked piglets. Appl Anim Behav Sci 2016; 184: 25-34
  • 4 Thodberg K, Herskin MS. Jensen. et al. The effect of docking length on the risk of tail biting, tail-directed behaviour, aggression and activity level of growing pigs kept under commercial conditions. Animal 2018; 12: 2609-2618
  • 5 Kallio PA, Janczak AM, Valros AE. et al. Case control study on environmental, nutritional and management-based risk factors for tail-biting in long-tailed pigs. Anim Welf 2018; 27: 21-34
  • 6 Breuer K, Sutcliffe MEM, Mercer JT. et al. The effect of breed on the development of adverse social behaviours in pigs. Appl Anim Behav Sci 2003; 84: 59-74
  • 7 Walker P, Bilkei G. Tail-biting in outdoor pig production. Vet J 2006; 171: 367-369
  • 8 EFSA. Scientific opinion of the Panel on Animal Health and Welfare on a request from Commission on the risks associated with tail biting in pigs and possible means to reduce the need for tail docking considering the different housing and husbandry systems. EFSA J 2007; 161: 1-13
  • 9 Valros A, Ahlstrom S, Rintala H. et al. The prevalence of tail damage in slaughter pigs in Finland and associations to carcass condemnations. Acta Agric Scand Sect A Anim Sci 2004; 54: 213-219
  • 10 Penny RHC, Edwards MJ, Mulley R. Clinical observations of necrosis of skin of suckling piglets. Aust Vet J 1971; 47: 529-537
  • 11 Blowey R, Done SH. Tail necrosis in pigs. Pig, J 2003; 51: 155-163
  • 12 Santi M, Gheller NB, Mores TJ. et al. Tail Necrosis in Piglets—Case Report. Available online: http://hdl.handle.net/11299/155093
  • 13 Reiner G, Lechner M. Inflammation and necrosis syndrome (SINS) in swine. CAB Rev 2019; 14: 1-8
  • 14 Reiner G, Lechner M, Eisenack A. et al. Prevalence of an inflammation and necrosis syndrome in suckling piglets. Animal 2019; 13: 2007-2017
  • 15 Reiner G, Kuehling J, Lechner M. et al. Inflammation and Necrosis Syndrome is influenced by husbandry and quality of sow in suckling piglets, weaners and fattening pigs. Porc Health Manag 2020; 6: 32
  • 16 Kuehling J, Loewenstein F, Wenisch S. et al. An in-depth diagnostic exploration of an inflammation and necrosis syndrome in a population of newborn piglets. Animal 2021; 15: 100078
  • 17 Kuehling J, Eisenhofer K, Lechner M. et al. The effects of boar on susceptibility to swine inflammation and necrosis syndrome in piglets. Porc Health Manag 2021; 7: 15
  • 18 Ringseis R, Gessner D, Löwenstein F. et al. Swine inflammation and necrosis syndrome is associated with plasma metabolites and liver transcriptome in affected piglets. Animals 2021; 11: 772
  • 19 Reiner G, Kuehling J, Loewenstein F. et al. Swine Inflammation and Necrosis Syndrome (SINS). Animals 2021; 11: 1670
  • 20 Schrauwen E, Thoonen H, Hoorens J. et al. A Pathophysiological effects of endotoxin infusion in young piglets. Br Vet J 1986; 142: 364-370
  • 21 Jadamus A, Schneider D. Long-term effect of fusariotoxins on the reproduction performance of sows testing the effectiveness of detoxifying feed additives 700. Feed Mag 2002; 10: 396-405
  • 22 Busch ME, Jensen IM, Korsgaard J. Development and consequences of ear necrosis in a weaner herd and two growingfinishing herds. In Proceedings of the 21st International Pig Veterinary Society Congress, Vancouver, BC, Canada, 18–21 July 2010. 45
  • 23 Guillou D, Demey V, Chacheyras-Durand F. et al. Mise en evidence du transfer des endotoxines de la truie vers sa portée dans le context du syndrome de dysgalactie post-partum. J Rech Porc 2013; 45: 269-270
  • 24 Pritts T, Hungness E, Wang Q. et al. Mucosal and enterocyte IL-6 production during sepsis and endotoxemia—Role of transcription factors and regulation by the stress response. Am J Surg 2002; 183: 372-383
  • 25 Van Limbergen T, Devreese M, Croubels S. et al. Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet Rec 2017; 181: 539
  • 26 Fox ES, Thomas P, Broitman SA. Clearance of Gut-Derived Endotoxins by the Liver: Release and Modification of 3 H, 14CLipopolysaccharide by Isolated Rat Kupffer Cells. Gastroenterol 1989; 96: 456-461
  • 27 Klein K, Fuchs GJ, Kulanpongs P. et al. Endotoxemia in protein-energy malnutrition. J Ped Gastroenterol Nutr 1988; 7: 225-228
  • 28 Hunt KM, Brooker SL, Sanz-Fernandez MV. et al. The effects of heat stress and Zn intake on the microbial communities in the stomach, ileum, colon and feces of pigs. FASEB J 2013; 27: 356.7
  • 29 Sanz Fernandez MV, Stoakes SK, Abuajamieh M. et al. LH Heat stress increases insulin sensitivity in pigs. Physiol Reprod 2015; 3: e1247
  • 30 Pearce SC, Mani V, Boddicker RL. et al. Heat stress reduces barrier function and alters intestinal metabolism in growing pigs. J Anim Sci 2012; 90: 257-259
  • 31 Pearce CS, Mani V, Boddicker RL. et al. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE 2013; 8: e70215
  • 32 Pearce SC, Sanz-Fernandez MV, Hollis JH. et al. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J Anim Sci 2014; 92: 5444-5454
  • 33 Rudovsky A. Anforderungen an die Stallfußböden für die Schweinehaltung. Bau Landwirtsch 2001; 3: 5-7
  • 34 Alizadeh A, Braber S, Akbari P. et al. Deoxynivalenol and its modified forms: Are there major differences?. Toxins 2016; 8: 334
  • 35 Pierron A, Alassane-Kpembi I, Oswald IP. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porc Health Manag 2016; 2: 21
  • 36 Pestka JJ, Zhou HR, Moon Y. et al. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unravelling a paradoxon. Toxicol Lett 2004; 153: 61-73
  • 37 Rosenbaum S, Ringseis R. Hillen. et al. The stress signalling pathway nuclear factor E2-related factor 2 is activated in the liver of sows during lactation. Acta Vet Scand 2012; 54: 59-64
  • 38 Marin DE, Pistol GC, Neagoe IV. et al. Effects of zearalenone on oxidative stress and inflammation in weanling piglets. Food Chem Toxicol 2013; 58: 408-415
  • 39 Liu B, Zhu X, Cui Y. et al. Consumption of dietary fiber from different sources during pregnancy alters sow gut microbiota and imroves performance and reduces inflammation in sows and iglets. mSystems 2021; 6: e00591-20
  • 40 Sun X, Cui Y, Su Y. et al. Dietary fiber ameliorates lipopolysaccharide-induced intestinal barrier function damage in piglets by modulation of intestinal microbiome. mSystems 2021; 6: e01374-20
  • 41 Brandl K, Schnabl B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease?. Expert Rev Gastroenterol Hepatol 2015; 9: 1069-1076
  • 42 Carotti S, Guarino MPL, Vespasiani-Gentilucci U. et al. Starring role of toll-like receptor-4 activation in the gut-liver axis. World, J Gastrointest Pathophysiol 2015; 6: 99-109
  • 43 Ravin HA, Rowley D, Jenkins C. et al. On the absorption of bacterial endotoxin from the gastro-intestinal tract of the normal and shocked animal. J Exp Med 1960; 112: 783-792
  • 44 Nolan P. The role of intestinal endotoxins in gastrointestinal and liver diseases. Progr Clin Biol Res 1988; 272: 147-159
  • 45 Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev 2000; 174: 21-34
  • 46 Dänicke S, Valenta H, Ganter M. et al. Lipopolysaccharides (LPS) modulate the metabolism of deoxynivalenol (DON) in the pig. Mycotox Res 2014; 30: 161-170
  • 47 Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1: 135-145
  • 48 Puri P, Wiest MM, Patnaik M. et al. The plasma lipidomic signature of nonalcoholic steatohepatitis: Differential levels of n-3 and n-6 polyunsaturated fatty acids and their lipoxygenase products. Hepatology 2007; 46: 310A-311A
  • 49 Allard J, Aghdassi E, Mohammed S. et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): A cross-sectional study. J Hepatol 2008; 48: 300-307
  • 50 Chiappini F, Coilly A, Kadar H. et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep 2017; 7: 46658
  • 51 Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non-alcoholic fatty liver disease. Pharmacol Ther 2019; 203: 107401
  • 52 Loewenstein F, Becker S, Kuehling J. et al. Inflammation and necrosis syndrome is associated with alterations in blood and metabolism in pigs. BMC Vet Res 2022; 18: 50
  • 53 Nordgreen J, Edwards SA, Boyle LA. et al. A proposed role for proinflammatory cytokines in damaging behavior in pigs. Front Vet Sci 2020; 7: 646