Semin Liver Dis 2022; 42(04): 475-488
DOI: 10.1055/a-1957-6384
Review Article

Regulation of Progression and Resolution of Liver Fibrosis by Immune Cells

Yuzo Koda
1   Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
2   Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
,
Nobuhiro Nakamoto
1   Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
,
Takanori Kanai
1   Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
3   Japan Agency for Medical Research and Development, Japan Agency for Medical Research and Development, Tokyo, Japan
› Author Affiliations
Funding This study was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid (B) JP20H04129; Japan Agency for Medical Research and Development (AMED) 21fk0210096h0001.


Abstract

The excessive accumulation of extracellular matrix proteins results in fibrosis—a condition implicated in several diseased conditions, such as nonalcoholic steatohepatitis, viral hepatitis, and autoimmune hepatitis. Despite its prevalence, direct and effective treatments for fibrosis are lacking, warranting the development of better therapeutic strategies. Accumulating evidence has shown that liver fibrosis—a condition previously considered irreversible—is reversible in specific conditions. Immune cells residing in or infiltrating the liver (e.g., macrophages) are crucial in the pathogenesis of fibrosis. Given this background, the roles and action mechanisms of various immune cells and their subsets in the progression and recovery of liver fibrosis, particularly concerning nonalcoholic steatohepatitis, are discussed in this review. Furthermore, the development of better therapeutic strategies based on stage-specific properties and using advanced techniques as well as the mechanisms underlying recovery are elaborated. In conclusion, we consider the review comprehensively provides the present achievements and future possibilities revolving around fibrosis treatment.



Publication History

Accepted Manuscript online:
08 October 2022

Article published online:
02 November 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology 2020; 158 (07) 1851-1864
  • 2 D'Ambrosio R, Aghemo A, Rumi MG. et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 2012; 56 (02) 532-543
  • 3 Marcellin P, Gane E, Buti M. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013; 381 (9865): 468-475
  • 4 Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015; 149 (02) 367-78.e5 , quiz e14–e15
  • 5 Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol 2022; 22 (07) 429-443
  • 6 Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest 2017; 127 (01) 55-64
  • 7 Iwaisako K, Jiang C, Zhang M. et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 2014; 111 (32) E3297-E3305
  • 8 Mederacke I, Hsu CC, Troeger JS. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 9 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24 (07) 908-922
  • 10 Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol 2020; 17 (02) 81-92
  • 11 Ramadori P, Kam S, Heikenwalder M. T cells: friends and foes in NASH pathogenesis and hepatocarcinogenesis. Hepatology 2022; 75 (04) 1038-1049
  • 12 Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114 (02) 147-152
  • 13 Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 2012; 52 (01) 59-69
  • 14 Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146 (06) 1513-1524
  • 15 Mouries J, Brescia P, Silvestri A. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71 (06) 1216-1228
  • 16 Seki E, De Minicis S, Gwak GY. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest 2009; 119 (07) 1858-1870
  • 17 Seki E, de Minicis S, Inokuchi S. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009; 50 (01) 185-197
  • 18 Krenkel O, Puengel T, Govaere O. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 2018; 67 (04) 1270-1283
  • 19 Chu PS, Nakamoto N, Ebinuma H. et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology 2013; 58 (01) 337-350
  • 20 Amiya T, Nakamoto N, Chu PS. et al. Bone marrow-derived macrophages distinct from tissue-resident macrophages play a pivotal role in concanavalin A-induced murine liver injury via CCR9 axis. Sci Rep 2016; 6: 35146
  • 21 Morikawa R, Nakamoto N, Amiya T. et al. Role of CC chemokine receptor 9 in the progression of murine and human non-alcoholic steatohepatitis. J Hepatol 2021; 74 (03) 511-521
  • 22 Imajo K, Fujita K, Yoneda M. et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab 2012; 16 (01) 44-54
  • 23 Pan J, Ou Z, Cai C. et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release. Cell Immunol 2018; 332: 111-120
  • 24 Kocabayoglu P, Lade A, Lee YA. et al. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol 2015; 63 (01) 141-147
  • 25 Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol 1999; 30 (01) 77-87
  • 26 Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci 2002; 7: d1720-d1726
  • 27 Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest 1994; 94 (04) 1563-1569
  • 28 Seki E, De Minicis S, Osterreicher CH. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
  • 29 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (01) 322-335
  • 30 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783): 512-518
  • 31 Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol 2018; 330: 27-42
  • 32 Remmerie A, Martens L, Thoné T. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 2020; 53 (03) 641-657.e14
  • 33 Seidman JS, Troutman TD, Sakai M. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 2020; 52 (06) 1057-1074.e7
  • 34 Dudek M, Pfister D, Donakonda S. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592 (7854): 444-449
  • 35 Deczkowska A, David E, Ramadori P. et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat Med 2021; 27 (06) 1043-1054
  • 36 Heier EC, Meier A, Julich-Haertel H. et al. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. J Hepatol 2017; 66 (06) 1241-1250
  • 37 Duffield JS, Forbes SJ, Constandinou CM. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115 (01) 56-65
  • 38 Sakaida I, Terai S, Yamamoto N. et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 2004; 40 (06) 1304-1311
  • 39 Ramachandran P, Pellicoro A, Vernon MA. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (46) E3186-E3195
  • 40 Yang L, Kwon J, Popov Y. et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 2014; 146 (05) 1339-50.e1
  • 41 Kantari-Mimoun C, Castells M, Klose R. et al. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology 2015; 61 (06) 2042-2055
  • 42 Jiao J, Sastre D, Fiel MI. et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 2012; 55 (01) 244-255
  • 43 Pradere JP, Kluwe J, De Minicis S. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58 (04) 1461-1473
  • 44 Koda Y, Teratani T, Chu PS. et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun 2021; 12 (01) 4474
  • 45 Gadd VL, Skoien R, Powell EE. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014; 59 (04) 1393-1405
  • 46 Zang S, Wang L, Ma X. et al. Neutrophils play a crucial role in the early stage of nonalcoholic steatohepatitis via neutrophil elastase in mice. Cell Biochem Biophys 2015; 73 (02) 479-487
  • 47 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 48 van der Windt DJ, Sud V, Zhang H. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68 (04) 1347-1360
  • 49 Wang Y, Zhang C. The roles of liver-resident lymphocytes in liver diseases. Front Immunol 2019; 10: 1582
  • 50 Safadi R, Ohta M, Alvarez CE. et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 2004; 127 (03) 870-882
  • 51 Wolf MJ, Adili A, Piotrowitz K. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 2014; 26 (04) 549-564
  • 52 Bhattacharjee J, Kirby M, Softic S. et al. Hepatic natural killer T-cell and CD8+ T-cell signatures in mice with nonalcoholic steatohepatitis. Hepatol Commun 2017; 1 (04) 299-310
  • 53 Stark R, Wesselink TH, Behr FM. et al. TRM maintenance is regulated by tissue damage via P2RX7. Sci Immunol 2018; 3 (30) eaau1022
  • 54 Borges da Silva H, Peng C, Wang H. et al. Sensing of ATP via the purinergic receptor P2RX7 promotes CD8+ Trm cell generation by enhancing their sensitivity to the cytokine TGF-β. Immunity 2020; 53 (01) 158-171.e6
  • 55 Rissiek B, Lukowiak M, Raczkowski F, Magnus T, Mittrücker HW, Koch-Nolte F. In vivo blockade of murine ARTC2.2 during cell preparation preserves the vitality and function of liver tissue-resident memory T cells. Front Immunol 2018; 9: 1580
  • 56 You Z, Li Y, Wang Q. et al. The clinical significance of hepatic CD69+ CD103+ CD8+ resident-memory T cells in autoimmune hepatitis. Hepatology 2021; 74 (02) 847-863
  • 57 Zimmer CL, von Seth E, Buggert M. et al. A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells. Sci Transl Med 2021; 13 (599) eabb3107
  • 58 Mossanen JC, Kohlhepp M, Wehr A. et al. CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4(+) T-cell-dependent control of senescence. Gastroenterology 2019; 156: 1877-1889.e4
  • 59 Wang T, Sun G, Wang Y. et al. The immunoregulatory effects of CD8 T-cell-derived perforin on diet-induced nonalcoholic steatohepatitis. FASEB J 2019; 33 (07) 8490-8503
  • 60 Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006; 130 (02) 435-452
  • 61 Hintermann E, Bayer M, Pfeilschifter JM, Luster AD, Christen U. CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. J Autoimmun 2010; 35 (04) 424-435
  • 62 Melhem A, Muhanna N, Bishara A. et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006; 45 (01) 60-71
  • 63 Gur C, Doron S, Kfir-Erenfeld S. et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 2012; 61 (06) 885-893
  • 64 Inzaugarat ME, Ferreyra Solari NE, Billordo LA, Abecasis R, Gadano AC, Cherñavsky AC. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol 2011; 31 (06) 1120-1130
  • 65 Sun G, Jin H, Zhang C. et al. OX40 regulates both innate and adaptive immunity and promotes nonalcoholic steatohepatitis. Cell Rep 2018; 25 (13) 3786-3799.e4
  • 66 Rau M, Schilling AK, Meertens J. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol 2016; 196 (01) 97-105
  • 67 Meng F, Wang K, Aoyama T. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143 (03) 765-776.e3
  • 68 Moreno-Fernandez ME, Giles DA, Oates JR. et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab 2021; 33 (06) 1187-1204.e9
  • 69 Endo Y, Asou HK, Matsugae N. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep 2015; 12 (06) 1042-1055
  • 70 Berod L, Friedrich C, Nandan A. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014; 20 (11) 1327-1333
  • 71 Katt J, Schwinge D, Schoknecht T. et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 2013; 58 (03) 1084-1093
  • 72 Kunzmann LK, Schoknecht T, Poch T. et al. Monocytes as potential mediators of pathogen-induced T-helper 17 differentiation in patients with primary sclerosing cholangitis (PSC). Hepatology 2020; 72 (04) 1310-1326
  • 73 Chu S, Sun R, Gu X. et al. Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcohol-associated steatohepatitis in mice. Hepatology 2021; 73 (03) 952-967
  • 74 Nakamoto N, Sasaki N, Aoki R. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol 2019; 4 (03) 492-503
  • 75 Li D, Guabiraba R, Besnard AG. et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 2014; 134 (06) 1422-1432.e11
  • 76 Karo-Atar D, Bordowitz A, Wand O. et al. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9 (01) 240-253
  • 77 Rabe KF, Celli BR, Wechsler ME. et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med 2021; 9 (11) 1288-1298
  • 78 Parker JM, Glaspole IN, Lancaster LH. et al. A phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2018; 197 (01) 94-103
  • 79 Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev 2018; 42: 27-36
  • 80 McHedlidze T, Waldner M, Zopf S. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39 (02) 357-371
  • 81 Vasseur P, Dion S, Filliol A. et al. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget 2017; 8 (30) 48563-48574
  • 82 Hart KM, Fabre T, Sciurba JC. et al. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Sci Transl Med 2017; 9 (396) eaal3694
  • 83 Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8 (07) 523-532
  • 84 Zhang M, Zhang S. T cells in fibrosis and fibrotic diseases. Front Immunol 2020; 11: 1142
  • 85 Zhang X, Lou J, Bai L, Chen Y, Zheng S, Duan Z. Immune regulation of intrahepatic regulatory T cells in fibrotic livers of mice. Med Sci Monit 2017; 23: 1009-1016
  • 86 Zhang X, Feng M, Liu X. et al. Persistence of cirrhosis is maintained by intrahepatic regulatory T cells that inhibit fibrosis resolution by regulating the balance of tissue inhibitors of metalloproteinases and matrix metalloproteinases. Transl Res 2016; 169: 67-79 , e61–62
  • 87 Van Herck MA, Vonghia L, Kwanten WJ. et al. Adoptive cell transfer of regulatory T cells exacerbates hepatic steatosis in high-fat high-fructose diet-fed mice. Front Immunol 2020; 11: 1711
  • 88 Wang H, Zhang H, Wang Y. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol 2021; 75 (06) 1271-1283
  • 89 He B, Wu L, Xie W. et al. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol 2017; 18 (01) 33
  • 90 Ikeno Y, Ohara D, Takeuchi Y. et al. Foxp3+ regulatory T cells inhibit CCl4-induced liver inflammation and fibrosis by regulating tissue cellular immunity. Front Immunol 2020; 11: 584048
  • 91 Muñoz-Rojas AR, Mathis D. Tissue regulatory T cells: regulatory chameleons. Nat Rev Immunol 2021; 21 (09) 597-611
  • 92 Bruzzì S, Sutti S, Giudici G. et al. B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radic Biol Med 2018; 124: 249-259
  • 93 Shalapour S, Lin XJ, Bastian IN. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551 (7680): 340-345
  • 94 Barrow F, Khan S, Fredrickson G. et al. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling. Hepatology 2021; 74 (02) 704-722
  • 95 McPherson S, Henderson E, Burt AD, Day CP, Anstee QM. Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol 2014; 60 (05) 1055-1062
  • 96 Himoto T, Nishioka M. Autoantibodies in liver disease: important clues for the diagnosis, disease activity and prognosis. Auto Immun Highlights 2013; 4 (02) 39-53
  • 97 Hammerich L, Bangen JM, Govaere O. et al. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59 (02) 630-642
  • 98 Liu M, Hu Y, Yuan Y, Tian Z, Zhang C. γδT cells suppress liver fibrosis via strong cytolysis and enhanced NK cell-mediated cytotoxicity against hepatic stellate cells. Front Immunol 2019; 10: 477
  • 99 Pellicci DG, Koay HF, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20 (12) 756-770
  • 100 Dusseaux M, Martin E, Serriari N. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011; 117 (04) 1250-1259
  • 101 Hegde P, Weiss E, Paradis V. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun 2018; 9 (01) 2146
  • 102 Magalhaes I, Pingris K, Poitou C. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 2015; 125 (04) 1752-1762
  • 103 Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15 (08) 471-485
  • 104 Koda Y, Nakamoto N, Chu PS. et al. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. J Clin Invest 2019; 129 (08) 3201-3213
  • 105 Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat Immunol 2008; 9 (11) 1253-1260
  • 106 Castellaneta A, Yoshida O, Kimura S. et al. Plasmacytoid dendritic cell-derived IFN-α promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Hepatology 2014; 60 (01) 267-277
  • 107 Revelo XS, Ghazarian M, Chng MH. et al. Nucleic acid-targeting pathways promote inflammation in obesity-related insulin resistance. Cell Rep 2016; 16 (03) 717-730
  • 108 Yun TJ, Lee JS, Machmach K. et al. Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells. Cell Metab 2016; 23 (05) 852-866
  • 109 Koda Y, Nakamoto N, Chu PS. et al. CCR9 axis inhibition enhances hepatic migration of plasmacytoid DCs and protects against liver injury. JCI Insight 2022; 7 (17) e159910
  • 110 Hannibal TD, Schmidt-Christensen A, Nilsson J, Fransén-Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia 2017; 60 (10) 2033-2041
  • 111 van Daalen KR, Reijneveld JF, Bovenschen N. Modulation of inflammation by extracellular granzyme A. Front Immunol 2020; 11: 931
  • 112 Fraile JM, Palliyil S, Barelle C, Porter AJ, Kovaleva M. Non-alcoholic steatohepatitis (NASH) - a review of a crowded clinical landscape, driven by a complex disease. Drug Des Devel Ther 2021; 15: 3997-4009
  • 113 Younossi ZM, Ratziu V, Loomba R. et al; REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019; 394 (10215): 2184-2196
  • 114 Harrison SA, Neff G, Guy CD. et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 2021; 160 (01) 219-231.e1
  • 115 Sanyal A, Charles ED, Neuschwander-Tetri BA. et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2019; 392 (10165): 2705-2717
  • 116 Mantovani A, Petracca G, Beatrice G, Csermely A, Lonardo A, Targher G. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites 2021; 11 (02) 73
  • 117 Westerouen Van Meeteren MJ, Drenth JPH, Tjwa ETTL. Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2020; 29 (02) 117-123
  • 118 Friedman SL, Ratziu V, Harrison SA. et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 2018; 67 (05) 1754-1767
  • 119 Ratziu V, Sanyal A, Torres D. et al. Impact of weight reduction on serum markers and liver histology including progression to cirrhosis in patients with nonalcoholic steatohepatitis (NASH) and bridging fibrosis. J Hepatol 2017; 66: S594-S595
  • 120 Lawitz EJ, Shevell DE, Tirucherai GS. et al. BMS-986263 in patients with advanced hepatic fibrosis: 36-week results from a randomized, placebo-controlled phase 2 trial. Hepatology 2022; 75 (04) 912-923
  • 121 Amor C, Feucht J, Leibold J. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583 (7814): 127-132
  • 122 Anstee QM, Neuschwander-Tetri BA, Wong VW. et al. Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA Phase 3 study design. Contemp Clin Trials 2020; 89: 105922
  • 123 Diehl AM, Harrison S, Caldwell S. et al. JKB-121 in patients with nonalcoholic steatohepatitis: a phase 2 double blind randomized placebo control study. J Hepatol 2018; 68: S103
  • 124 Harrison SA, Marri SR, Chalasani N. et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther 2016; 44 (11-12): 1183-1198
  • 125 Hu M, Wang Y, Liu Z. et al. Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat Nanotechnol 2021; 16 (04) 466-477