Semin Neurol 2022; 42(06): 723-734
DOI: 10.1055/a-1985-0124
Review Article

Challenging Myelopathy Cases

Rafid Mustafa
1   Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
,
Nicholas L. Zalewski
2   Department of Neurology, Mayo Clinic Arizona, Scottsdale, Arizona
,
1   Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
3   Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
,
Neeraj Kumar
1   Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
› Author Affiliations
Financial Support and Conflict of Interest Disclosure
R.M. reports no disclosures relevant to this manuscript.
N.L.Z. reports no disclosures relevant to this manuscript.
E.P.F. has served on advisory boards for Alexion, Genentech and Horizon Therapeutics. He has received speaker honoraria from Pharmacy Times. He received royalties from UpToDate. E.P.F. was a site primary investigator in a randomized clinical trial on inebilizumab in neuromyelitis optica spectrum disorder run by Medimmune/Viela-Bio/Horizon Therapeutics. E.P.F. has received funding from the NIH (R01NS113828). E.P.F. is a member of the Medical Advisory Board of the MOG project. E.P.F. is an editorial board member of the Journal of the Neurological Sciences and Neuroimmunology Reports. A patent has been submitted on DACH1-IgG as a biomarker of paraneoplastic autoimmunity.
N.K. reports no disclosures relevant to this manuscript.

Abstract

Misdiagnosis of myelopathies is common and can lead to irreversible disability when diagnosis- and disease-specific treatments are delayed. Therefore, quickly determining the etiology of myelopathy is crucial. Clinical evaluation and MRI spine are paramount in establishing the correct diagnosis and subsequently an appropriate treatment plan. Herein, we review an approach to myelopathy diagnosis focused on the time course of neurologic symptom progression and neuroimaging pearls, and apply them to a variety of inflammatory, structural, and vascular myelopathy cases.



Publication History

Accepted Manuscript online:
23 November 2022

Article published online:
22 December 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Flanagan EP, Pittock SJ. Diagnosis and management of spinal cord emergencies. Handb Clin Neurol 2017; 140: 319-335
  • 2 Barreras P, Fitzgerald KC, Mealy MA. et al. Clinical biomarkers differentiate myelitis from vascular and other causes of myelopathy. Neurology 2018; 90 (01) e12-e21
  • 3 Zalewski NL, Flanagan EP, Keegan BM. Evaluation of idiopathic transverse myelitis revealing specific myelopathy diagnoses. Neurology 2018; 90 (02) e96-e102
  • 4 Lopez Chiriboga S, Flanagan EP. Myelitis and other autoimmune myelopathies. Continuum (Minneap Minn) 2021; 27 (01) 62-92
  • 5 Zalewski NL, Rabinstein AA, Krecke KN. et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol 2019; 76 (01) 56-63
  • 6 Toledano M. Infectious myelopathies. Continuum (Minneap Minn) 2021; 27 (01) 93-120
  • 7 Zalewski NL, Rabinstein AA, Brinjikji W. et al. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol 2018; 75 (12) 1542-1545
  • 8 Kumar N, Gross Jr JB, Ahlskog JE. Myelopathy due to copper deficiency. Neurology 2003; 61 (02) 273-274
  • 9 Flanagan EP, McKeon A, Lennon VA. et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 2011; 76 (24) 2089-2095
  • 10 Flanagan EP, Krecke KN, Marsh RW, Giannini C, Keegan BM, Weinshenker BG. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann Neurol 2014; 76 (01) 54-65
  • 11 Zalewski NL, Rabinstein AA, Krecke KN. et al. Spinal cord infarction: clinical and imaging insights from the periprocedural setting. J Neurol Sci 2018; 388: 162-167
  • 12 Dubey D, Pittock SJ, Krecke KN. et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol 2019; 76 (03) 301-309
  • 13 Jitprapaikulsan J, Lopez Chiriboga AS, Flanagan EP. et al. Novel glial targets and recurrent longitudinally extensive transverse myelitis. JAMA Neurol 2018; 75 (07) 892-895
  • 14 López-Chiriboga AS, Majed M, Fryer J. et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol 2018; 75 (11) 1355-1363
  • 15 Lopez-Chiriboga AS, Sechi E, Buciuc M. et al. Long-term outcomes in patients with myelin oligodendrocyte glycoprotein immunoglobulin G-associated disorder. JAMA Neurol 2020; 77 (12) 1575-1577
  • 16 Kitley J, Waters P, Woodhall M. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol 2014; 71 (03) 276-283
  • 17 Zalewski NL, Morris PP, Weinshenker BG. et al. Ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2017; 88 (03) 218-225
  • 18 Banks SA, Morris PP, Chen JJ. et al. Brainstem and cerebellar involvement in MOG-IgG-associated disorder versus aquaporin-4-IgG and MS. J Neurol Neurosurg Psychiatry 2020; jnnp-2020-325121
  • 19 Sechi E, Buciuc M, Pittock SJ. et al. Positive predictive value of myelin oligodendrocyte glycoprotein autoantibody testing. JAMA Neurol 2021; 78 (06) 741-746
  • 20 Weinshenker BG, O'Brien PC, Petterson TM. et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 1999; 46 (06) 878-886
  • 21 Abboud H, Petrak A, Mealy M, Sasidharan S, Siddique L, Levy M. Treatment of acute relapses in neuromyelitis optica: steroids alone versus steroids plus plasma exchange. Mult Scler 2016; 22 (02) 185-192
  • 22 Chen JJ, Flanagan EP, Bhatti MT. et al. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology 2020; 95 (02) e111-e120
  • 23 Murphy OC, Salazar-Camelo A, Jimenez JA. et al. Clinical and MRI phenotypes of sarcoidosis-associated myelopathy. Neurol Neuroimmunol Neuroinflamm 2020; 7 (04) e722
  • 24 Flanagan EP, Kaufmann TJ, Krecke KN. et al. Discriminating long myelitis of neuromyelitis optica from sarcoidosis. Ann Neurol 2016; 79 (03) 437-447
  • 25 Fritz D, van de Beek D, Brouwer MC, Booij J. Whole-body 18F-FDG PET-CT in the diagnosis of neurosarcoidosis. Mayo Clin Proc 2020; 95 (05) 1082-1084
  • 26 Stern BJ, Royal III W, Gelfand JM. et al. Definition and consensus diagnostic criteria for neurosarcoidosis: from the Neurosarcoidosis Consortium Consensus Group. JAMA Neurol 2018; 75 (12) 1546-1553
  • 27 Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002; 59 (04) 499-505
  • 28 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
  • 29 Zalewski NL, Krecke KN, Weinshenker BG. et al. Central canal enhancement and the trident sign in spinal cord sarcoidosis. Neurology 2016; 87 (07) 743-744
  • 30 Mustafa R, Passe TJ, Lopez-Chiriboga AS. et al. Utility of MRI enhancement pattern in myelopathies with longitudinally extensive T2 lesions. Neurol Clin Pract 2021; 11 (05) e601-e611
  • 31 Flanagan EP, Keegan BM. Paraneoplastic myelopathy. Neurol Clin 2013; 31 (01) 307-318
  • 32 Faissner S, Lukas C, Reinacher-Schick A, Tannapfel A, Gold R, Kleiter I. Amphiphysin-positive paraneoplastic myelitis and stiff-person syndrome. Neurol Neuroimmunol Neuroinflamm 2016; 3 (06) e285
  • 33 McKeon A, Apiwattanakul M, Lachance DH. et al. Positron emission tomography-computed tomography in paraneoplastic neurologic disorders: systematic analysis and review. Arch Neurol 2010; 67 (03) 322-329
  • 34 Takahashi M, Yamashita Y, Sakamoto Y, Kojima R. Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology 1989; 173 (01) 219-224
  • 35 Ozawa H, Sato T, Hyodo H. et al. Clinical significance of intramedullary Gd-DTPA enhancement in cervical myelopathy. Spinal Cord 2010; 48 (05) 415-422
  • 36 Conway BL, Clarke MJ, Kaufmann TJ, Flanagan EP. Utility of extension views in spondylotic myelopathy mimicking transverse myelitis. Mult Scler Relat Disord 2017; 11: 62-64
  • 37 Fugate JE, Lanzino G, Rabinstein AA. Clinical presentation and prognostic factors of spinal dural arteriovenous fistulas: an overview. Neurosurg Focus 2012; 32 (05) E17
  • 38 Toossi S, Josephson SA, Hetts SW. et al. Utility of MRI in spinal arteriovenous fistula. Neurology 2012; 79 (01) 25-30
  • 39 Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009; 30 (04) 639-648
  • 40 Muralidharan R, Saladino A, Lanzino G, Atkinson JL, Rabinstein AA. The clinical and radiological presentation of spinal dural arteriovenous fistula. Spine 2011; 36 (25) E1641-E1647
  • 41 Nasr DM, Brinjikji W, Rabinstein AA, Lanzino G. Clinical outcomes following corticosteroid administration in patients with delayed diagnosis of spinal arteriovenous fistulas. J Neurointerv Surg 2017; 9 (06) 607-610
  • 42 Nasr DM, Brinjikji W, Clarke MJ, Lanzino G. Clinical presentation and treatment outcomes of spinal epidural arteriovenous fistulas. J Neurosurg Spine 2017; 26 (05) 613-620
  • 43 Open and endovascular treatment of spinal dural arteriovenous fistulas: a 10-year experience. J Neurosurg Spine 2017; 26 (04) 519-523