Subscribe to RSS
DOI: 10.1055/a-1990-0201
Sarkopenie – Definition, radiologische Erfassung, klinische Bedeutung
Article in several languages: English | deutschAuthors

Zusammenfassung
Hintergrund Bei der Sarkopenie handelt es sich um ein altersabhängiges Syndrom, welches durch einen Verlust an Muskelmasse und -kraft gekennzeichnet ist. In der Folge wird die Selbständigkeit älterer Menschen eingeschränkt und die Hospitalisierungsrate sowie die Mortalität steigen. Die Entwicklung einer Sarkopenie beginnt oftmals bereits im mittleren Lebensalter durch Fehl- und Mangelernährung bzw. in Kombination mit mangelnder körperlicher Aktivität. Verstärkt wird dieser Effekt durch Begleiterkrankungen wie Adipositas oder Stoffwechselerkrankungen wie Diabetes mellitus.
Methode Durch effektive präventiv-diagnostische Verfahren und die gezielte therapeutische Behandlung der Sarkopenie lassen sich die negativen Auswirkungen auf das Individuum reduzieren und negative gesundheitliche sowie sozioökonomische Effekte verhindern. Hierfür stehen verschiedene diagnostische Möglichkeiten zur Verfügung. Neben einfachen klinischen Methoden wie der Messung der Muskelkraft lässt sich die Sarkopenie auch mit bildgebenden Verfahren erfassen, etwa mittels der Dual-Röntgen-Absorptiometrie (DXA), der Computertomografie (CT), der Magnetresonanztomografie (MRT) oder der Sonografie. Die DXA bietet dabei als einfaches und kostengünstiges Verfahren eine dosisarme Möglichkeit der Erfassung der Körperzusammensetzung. Mit den schnittbildgebenden Verfahren der CT und MRT ergeben sich weitere diagnostische Möglichkeiten bis hin zur MR-Spektroskopie (MRS) zur nicht invasiven molekularen Analyse von Muskelgewebe. Durch die CT können auch bei im Rahmen anderer Fragestellungen durchgeführten Untersuchungen zusätzlich Parameter der Skelettmuskulatur erfasst werden (opportunistische sekundäre Verwendung von CT-Daten), so beispielsweise die abdominelle Muskelmasse (total abdominal muscle area – TAMA) oder der Psoas- sowie der Pektoralis-Muskel-Index. Die Bedeutung der Sarkopenie ist bereits für Patienten mit verschiedenen Tumorentitäten und auch Infektionen wie SARS-COV2 gut untersucht.
Ergebnisse und Schlussfolgerung Nicht zuletzt durch den demografischen Wandel der Bevölkerung wird die Sarkopenie an Bedeutung zunehmen. In dieser Übersichtsarbeit werden die Möglichkeiten zur Diagnostik der Sarkopenie, die klinische Bedeutung und Therapiemöglichkeiten beschrieben. Dabei können insbesondere CT-Untersuchungen, die wiederholt bei Tumorpatienten durchgeführt werden, zur Diagnostik herangezogen werden. Diese opportunistische Verwendung kann dabei durch den Einsatz künstlicher Intelligenz unterstützt werden.
Kernaussagen:
-
Sarkopenie ist ein altersabhängiges Syndrom mit Verlust an Muskelmasse und kraft.
-
Durch Früherkennung und Therapie lassen sich negative Effekte einer Sarkopenie verhindern.
-
Zur Diagnostik stehen neben der DEXA auch Schnittbildverfahren (CT, MRT) zur Verfügung.
-
Der Einsatz künstlicher Intelligenz (KI) bietet weitere Möglichkeiten bei der Sarkopenie-Diagnostik.
Zitierweise
-
Vogele D, Otto S, Sollmann N et al. Sarcopenia – Definition, Radiological Diagnosis, Clinical Significance. Fortschr Röntgenstr 2023; 195: 393 – 405
Key words
sarcopenia - radiological screening - body composition analysis - quantitative imaging - segmentationPublication History
Received: 08 June 2022
Accepted: 29 October 2022
Article published online:
11 January 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bauer JM, Wirth R, Volkert D. et al. Malnutrition, sarcopenia and cachexia in the elderly: from pathophysiology to treatment. Conclusions of an international meeting of experts, sponsored by the BANSS Foundation. Dtsch Med Wochenschr 2008; 133: 305-310
- 2 Rezende IFB, Conceição-Machado MEP, Souza VS. et al. Sarcopenia in children and adolescents with chronic liver disease. J Pediatr (Rio J) 2020; 96: 439-446
- 3 Ritz A, Kolorz J, Hubertus J. et al. Sarcopenia is a prognostic outcome marker in children with high-risk hepatoblastoma. Pediatr Blood Cancer 2021; 68: e28862
- 4 Triarico S, Rinninella E, Mele MC. et al. Prognostic impact of sarcopenia in children with cancer: a focus on the psoas muscle area (PMA) imaging in the clinical practice. Eur J Clin Nutr 2022; 76: 783-788
- 5 Berger MJ, Doherty TJ. Sarcopenia: prevalence, mechanisms, and functional consequences. Interdiscip Top Gerontol 2010; 37: 94-114
- 6 Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 2014; 5: 253-259
- 7 Kim M, Won CW. Sarcopenia in Korean Community-Dwelling Adults Aged 70 Years and Older: Application of Screening and Diagnostic Tools From the Asian Working Group for Sarcopenia 2019 Update. J Am Med Dir Assoc 2020; 21: 752-758
- 8 Kang S, Oh TJ, Cho BL. et al. Sex differences in sarcopenia and frailty among community-dwelling Korean older adults with diabetes: The Korean Frailty and Aging Cohort Study. J Diabetes Investig 2021; 12: 155-164
- 9 Pickhardt PJ, Perez AA, Garrett JW. et al. Fully Automated Deep Learning Tool for Sarcopenia Assessment on CT: L1 Versus L3 Vertebral Level Muscle Measurements for Opportunistic Prediction of Adverse Clinical Outcomes. Am J Roentgenol 2022; 218: 124-131
- 10 Petermann-Rocha F, Ferguson LD, Gray SR. et al. Association of sarcopenia with incident osteoporosis: a prospective study of 168,682 UK biobank participants. J Cachexia Sarcopenia Muscle 2021; 12: 1179-1188
- 11 Soh Y, Won CW. Sex differences in impact of sarcopenia on falls in community-dwelling Korean older adults. BMC Geriatr 2021; 21: 716
- 12 Russo CR, Ricca M, Ferrucci L. True osteoporosis and frailty-related osteopenia: two different clinical entities. J Am Geriatr Soc 2000; 48: 1738-1739
- 13 Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 2018; 14: 513-537
- 14 Zembura M, Matusik P. Sarcopenic Obesity in Children and Adolescents: A Systematic Review. Front Endocrinol (Lausanne) 2022; 13: 914740
- 15 Fearon K, Strasser F, Anker SD. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489-495
- 16 Muscaritoli M, Anker SD, Argilés J. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010; 29: 154-159
- 17 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
- 18 Ali AM, Kunugi H. Screening for Sarcopenia (Physical Frailty) in the COVID-19 Era. Int J Endocrinol 2021; 2021: 5563960
- 19 Gensous N, Bacalini MG, Franceschi C. et al. Age-Related DNA Methylation Changes: Potenzial Impact on Skeletal Muscle Aging in Humans. Front Physiol 2019; 10: 996
- 20
Cruz-Jentoft AJ,
Baeyens JP,
Bauer JM.
et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European
Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412-423
Reference Ris Wihthout Link
- 21 Giraudo C, Cavaliere A, Lupi A. et al. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg 2020; 10: 1602-1613
- 22 Sergi G, Trevisan C, Veronese N. et al. Imaging of sarcopenia. Eur J Radiol 2016; 85: 1519-1524
- 23 Amini B, Boyle SP, Boutin RD. et al. Approaches to Assessment of Muscle Mass and Myosteatosis on Computed Tomography: A Systematic Review. J Gerontol A Biol Sci Med Sci 2019; 74: 1671-1678
- 24 Goodpaster BH, Kelley DE, Wing RR. et al. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 1999; 48: 839-847
- 25 Mitsiopoulos N, Baumgartner RN, Heymsfield SB. et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985) 1998; 85: 115-122
- 26 Derstine BA, Holcombe SA, Goulson RL. et al. Quantifying Sarcopenia Reference Values Using Lumbar and Thoracic Muscle Areas in a Healthy Population. J Nutr Health Aging 2017; 21: 180-185
- 27 Blauwhoff-Buskermolen S, Versteeg KS, de van derSchueren MA. et al. Loss of Muscle Mass During Chemotherapy Is Predictive for Poor Survival of Patients With Metastatic Colorectal Cancer. J Clin Oncol 2016; 34: 1339-1344
- 28 Cespedes Feliciano EM, Avrutin E, Caan BJ. et al. Screening for low muscularity in colorectal cancer patients: a valid, clinic-friendly approach that predicts mortality. J Cachexia Sarcopenia Muscle 2018; 9: 898-908
- 29 Prado CM, Lieffers JR, McCargar LJ. et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 2008; 9: 629-635
- 30 Martin L, Birdsell L, Macdonald N. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 2013; 31: 1539-1547
- 31 Lurz E, Patel H, Lebovic G. et al. Paediatric reference values for total psoas muscle area. J Cachexia Sarcopenia Muscle 2020; 11: 405-414
- 32 Derstine BA, Holcombe SA, Ross BE. et al. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep 2018; 8: 11369
- 33 Paris MT. Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning. Lifestyle Genom 2020; 13: 28-31
- 34 Strahlenschutzkommission (SSK), Strahlenhygienische Aspekte bei Röntgenuntersuchungen zur Bestimmung der Körperzusammensetzung (insbesondere Knochendichtemessungen) mittels Dual X-ray Absorptiometry (DXA) Stellungnahme der Strahlenschutzkommission,. https://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2015/DXA.pdf?__blob=publicationFile Zugegriffen: 04.08.2022
- 35 Strahlenschutzkommission (SSK), Orientierungshilfe für bildgebende Verfahren 3., überarbeitete Auflage; Empfehlung der Strahlenschutzkommission Verabschiedet in der 300. Sitzung der Strahlenschutzkommission am 27. Juni 2019,. https://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2019/2019-06-27Orientie.pdf?__blob=publicationFile Zugegriffen: 04.08.2022
- 36 Messina C, Maffi G, Vitale JA. et al. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg 2018; 8: 86-99
- 37 Pons C, Borotikar B, Garetier M. et al. Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability. PLoS One 2018; 13: e0207847
- 38 Kallman DA, Plato CC, Tobin JD. The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol 1990; 45: M82-M88
- 39 Marcus RL, Addison O, Dibble LE. et al. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res 2012; 2012: 629637
- 40 Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res 2012; 2012: 172957
- 41 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153: 189-194
- 42 Reeder SB. Emerging quantitative magnetic resonance imaging biomarkers of hepatic steatosis. Hepatology 2013; 58: 1877-1880
- 43 Reeder SB, Cruite I, Hamilton G. et al. Quantitative Assessment of Liver Fat with Magnetic Resonance Imaging and Spectroscopy. J Magn Reson Imaging 2011; 34: 729-749
- 44 Grimm A, Meyer H, Nickel MD. et al. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh. J Cachexia Sarcopenia Muscle 2018; 9: 1093-1100
- 45 Grimm A, Meyer H, Nickel MD. et al. A Comparison between 6-point Dixon MRI and MR Spectroscopy to Quantify Muscle Fat in the Thigh of Subjects with Sarcopenia. J Frailty Aging 2019; 8: 21-26
- 46 Backens M. Technique of proton and phosphorous MR spectroscopy. Radiologe 2017; 57: 428-437
- 47 Lanza IR, Bhagra S, Nair KS. et al. Measurement of human skeletal muscle oxidative capacity by 31P-MR spectroscopy: a cross-validation with in vitro measurements. J Magn Reson Imaging 2011; 34: 1143-1150
- 48 Schocke M, Esterhammer R, Greiner A. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease. Vasa 2008; 37: 199-210
- 49 Phielix E, Mensink M. Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 2008; 94: 252-258
- 50 Ripley EM, Clarke GD, Hamidi V. et al. Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study. Am J Physiol Endocrinol Metab 2018; 315: E229-E239
- 51 Khan AI, Reiter DA, Sekhar A. et al. MRI quantitation of abdominal skeletal muscle correlates with CT-based analysis: implications for sarcopenia measurement. Appl Physiol Nutr Metab 2019; 44: 814-819
- 52 Perkisas S, Baudry S, Bauer J. et al. The SARCUS project: evidence-based muscle assessment through ultrasound. Eur Geriatr Med 2019; 10: 157-158
- 53 Ticinesi A, Nouvenne A, Folesani G. et al. An investigation of multimorbidity measures as risk factors for pneumonia in elderly frail patients admitted to hospital. Eur J Intern Med 2016; 28: 102-106
- 54 Faron A, Opheys NS, Nowak S. et al. Deep Learning-Based Body Composition Analysis Predicts Outcome in Melanoma Patients Treated with Immune Checkpoint Inhibitors. Diagnostics (Basel) 2021; 11
- 55 Faron A, Sprinkart AM, Kuetting DLR. et al. Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis. Sci Rep 2020; 10: 11765
- 56 Nowak S, Faron A, Luetkens JA. et al. Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis: A Deep Learning Approach. Invest Radiol 2020; 55: 357-366
- 57 Nowak S, Theis M, Wichtmann BD. et al. End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT. Eur Radiol 2021;
- 58 Kim YJ. Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography. Int J Environ Res Public Health 2021; 18
- 59 Suetta C, Haddock B, Alcazar J. et al. The Copenhagen Sarcopenia Study: lean mass, strength, power, and physical function in a Danish cohort aged 20-93 years. J Cachexia Sarcopenia Muscle 2019; 10: 1316-1329
- 60 Gould H, Brennan SL, Kotowicz MA. et al. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int 2014; 94: 363-372
- 61 Simonsen C, Kristensen TS, Sundberg A. et al. Assessment of sarcopenia in patients with upper gastrointestinal tumors: Prevalence and agreement between computed tomography and dual-energy x-ray absorptiometry. Clin Nutr 2021; 40: 2809-2816
- 62 McGovern J, Dolan RD, Horgan PG. et al. Computed tomography-defined low skeletal muscle index and density in cancer patients: observations from a systematic review. J Cachexia Sarcopenia Muscle 2021; 12: 1408-1417
- 63 Shachar SS, Williams GR, Muss HB. et al. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer 2016; 57: 58-67
- 64 Aleixo GFP, Shachar SS, Nyrop KA. et al. Myosteatosis and prognosis in cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 145: 102839
- 65 Kim IH, Choi MH, Lee IS. et al. Clinical significance of skeletal muscle density and sarcopenia in patients with pancreatic cancer undergoing first-line chemotherapy: a retrospective observational study. BMC Cancer 2021; 21: 77
- 66 Budui SL, Rossi AP, Zamboni M. The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab 2015; 12: 22-26
- 67 Jo E, Lee SR, Park BS. et al. Potenzial mechanisms underlying the role of chronic inflammation in age-related muscle wasting. Aging Clin Exp Res 2012; 24: 412-422
- 68 An HJ, Tizaoui K, Terrazzino S. et al. Sarcopenia in Autoimmune and Rheumatic Diseases: A Comprehensive Review. Int J Mol Sci 2020; 21
- 69 Modesto AE, Stuart CE, Cho J. et al. Psoas muscle size as a magnetic resonance imaging biomarker of progression of pancreatitis. Eur Radiol 2020; 30: 2902-2911
- 70 van Grinsven J, van Vugt JLA, Gharbharan A. et al. The Association of Computed Tomography-Assessed Body Composition with Mortality in Patients with Necrotizing Pancreatitis. J Gastrointest Surg 2017; 21: 1000-1008
- 71 Gualtieri P, Falcone C, Romano L. et al. Body Composition Findings by Computed Tomography in SARS-CoV-2 Patients: Increased Risk of Muscle Wasting in Obesity. Int J Mol Sci 2020; 21
- 72 Ufuk F, Demirci M, Sagtas E. et al. The prognostic value of pneumonia severity score and pectoralis muscle Area on chest CT in adult COVID-19 patients. Eur J Radiol 2020; 131: 109271
- 73 Jang M, Park HW, Huh J. et al. Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI. Eur Radiol 2019; 29: 2417-2425
- 74 Tee YS, Cheng CT, Wu YT. et al. The psoas muscle index distribution and influence of outcomes in an Asian adult trauma population: an alternative indicator for sarcopenia of acute diseases. Eur J Trauma Emerg Surg 2021; 47: 1787-1795
- 75 Zumsteg DM, Chu CE, Midwinter MJ. Radiographic assessment of sarcopenia in the trauma setting: a systematic review. Trauma Surg Acute Care Open 2020; 5: e000414
- 76 Volpi E, Kobayashi H, Sheffield-Moore M. et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 2003; 78: 250-258
- 77 Anthony JC, Anthony TG, Kimball SR. et al. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr 2001; 131: 856s-860s
- 78 Moro T, Brightwell CR, Deer RR. et al. Muscle Protein Anabolic Resistance to Essential Amino Acids Does Not Occur in Healthy Older Adults Before or After Resistance Exercise Training. J Nutr 2018; 148: 900-909
- 79 Deutz NE, Bauer JM, Barazzoni R. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 2014; 33: 929-936
- 80 Lichtenberg T, von Stengel S, Sieber C. et al. The Favorable Effects of a High-Intensity Resistance Training on Sarcopenia in Older Community-Dwelling Men with Osteosarcopenia: The Randomized Controlled FrOST Study. Clin Interv Aging 2019; 14: 2173-2186
- 81 Landi F, Liperoti R, Russo A. et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 2012; 31: 652-658
- 82 Paddon-Jones D, Campbell WW, Jacques PF. et al. Protein and healthy aging. Am J Clin Nutr 2015; 101: 1339s-1345s
- 83 Breen L, Phillips SM. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the “anabolic resistance” of ageing. Nutr Metab (Lond) 2011; 8: 68
- 84 Dong X, Dan X, Yawen A. et al. Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscle CT radiomics and machine learning. Thorac Cancer 2020; 11: 2650-2659
- 85 Schlett CL, Hendel T, Weckbach S. et al. Population-Based Imaging and Radiomics: Rationale and Perspective of the German National Cohort MRI Study. Rofo 2016; 188: 652-661
- 86 Petersen SE, Matthews PM, Bamberg F. et al. Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank – rationale, challenges and approaches. J Cardiovasc Magn Reson 2013; 15: 46