Die Wirbelsäule 2023; 07(03): 159-168
DOI: 10.1055/a-1993-9102
Übersicht

Minimalinvasive Chirurgie bei Wirbelsäulentrauma – Unterschiede der Versorgungstechniken zwischen jungen und alten Patienten

Minimally invasive surgery for spinal trauma – Differences in surgical techniques between young and old patients
Bernhard Ullrich
1   Klinik für Unfall- und Wiederherstellungschirurgie, BG Klinikum Bergmannstrost Halle, Halle, Deutschland (Ringgold ID: RIN39781)
2   Klinik für Unfall- Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena, Jena, Deutschland
,
Ulrich Spiegl
3   Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland (Ringgold ID: RIN39066)
› Author Affiliations

Zusammenfassung

Perkutane Versorgungen von Frakturen an der BWS und LWS sind weit verbreitet und haben die offenen Verfahren in vielen Fällen als Standard verdrängt. Hierbei kommen beim Knochengesunden der minimalinvasive Fixateur interne mittels monoaxialen Schrauben sowie der thorakoskopische ventrale (partielle) Wirbelkörperersatz bzw. mittels Mini-Lumbotomie unterhalb von LWK 2 zum Einsatz. Beim osteoporotischen Knochen kommen v.a. Zementaugmentationen der Wirbelkörper und/oder dorsale Stabilisierungen mittels perkutanem Fixateur interne mit polyaxialen Schrauben mit oder ohne Zementaugmentation der Pedikelschrauben zum Einsatz. Die Vorteile der minimalinvasiven Versorgungen sind der geringere Blutverlust, die niedrigere Komplikationsrate sowie der geringere postoperative Schmerz.

Abstract

Surgical treatment of spinal injuries has seen a strong shift toward minimally invasive surgical procedures over the past 10 years. It is evident from the literature that there are advantages to the minimally invasive procedures in terms of postoperative pain, blood loss, and cut suture time. Feared disadvantages such as insufficient reduction and retention can be avoided by correct indication and surgical technique. With this in mind, this narrative review presents standard procedures for minimally invasive stabilization of spine fractures. These are posterior fixation and anterior fusion procedures, which can also be applied in combination. Specific techniques such as short level posterior and long-segmental posterior instrumentation, hybrid-fixation, and throracoscopic anterior fusion are described. Another focus is on differentiating the presentation of surgical techniques depending on bone quality, for example, in osteoporosis and ankylozing changes. Here, too, it can be shown that minimally invasive stabilization can be performed safely. In particular, injuries in ankylozed spine can be stabilized minimally invasively without significant disadvantages.



Publication History

Article published online:
24 August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Rupp M, Walter N, Pfeifer C. et al. The incidence of fractures among the adult population of Germany: an analysis from 2009 through 2019. Deutsches Ärzteblatt International 2021; 118: 665 DOI: 10.3238/arztebl.m2021.0238. (PMID: 34140088)
  • 2 Verheyden AP, Spiegl UJ, Ekkerlein H. et al. Treatment of Fractures of the Thoracolumbar Spine: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global spine journal 2018; 8 (Suppl. 02) 34S-45S DOI: 10.1177/2192568218771668.
  • 3 Blattert TR, Schnake KJ, Gonschorek O. et al. Nonsurgical and Surgical Management of Osteoporotic Vertebral Body Fractures: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global spine journal 2018; 8 (Suppl. 02) 50S-55S DOI: 10.1177/2192568217745823.
  • 4 Josten C, Heyde CE, Spiegl UJ. Complex Pathologies of the Spine: Trauma meets Degeneration. Zeitschrift fur Orthopadie und Unfallchirurgie 2016; DOI: 10.1055/s-0042-108344.
  • 5 Prokop A, Lohlein F, Chmielnicki M. et al. Minimally invasive percutaneous instrumentation for spine fractures. Der Unfallchirurg 2009; 112 DOI: 10.1007/s00113-008-1556-z.
  • 6 Grass R, Biewener A, Dickopf A. et al. Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study. Der Unfallchirurg 2006; 109: 297-305 DOI: 10.1007/s00113-005-1037-6.
  • 7 Tian F, Tu L-Y, Gu W-F. et al. Percutaneous versus open pedicle screw instrumentation in treatment of thoracic and lumbar spine fractures: A systematic review and meta-analysis. Medicine 2018; 97 DOI: 10.1097/MD.0000000000012535. (PMID: 30313040)
  • 8 Pishnamaz M, Schemmann U, Herren C. et al. Muscular changes after minimally invasive versus open spinal stabilization of thoracolumbar fractures: a literature review. Journal of Musculoskeletal & Neuronal Interactions 2018; 18: 62-70 (PMID: 29504580)
  • 9 Galibert P, Deramond H, Rosat P. et al. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neuro-chirurgie 1987; 33: 166-168 (PMID: 3600949)
  • 10 Alhashash M, Shousha M, Barakat AS. et al. Effects of polymethylmethacrylate cement viscosity and bone porosity on cement leakage and new vertebral fractures after percutaneous vertebroplasty: A Prospective Study. Global spine journal 2019; 9: 754-760 DOI: 10.1177/2192568219830327. (PMID: 31552157)
  • 11 Bornemann R, Kabir K, Otten L. et al. Radiofrequenz-Kyphoplastie–ein innovatives Verfahren zur Behandlung von vertebralen Kompressionsfrakturen–Vergleiche mit konservativer Behandlung. Zeitschrift für Orthopädie und Unfallchirurgie 2012; 150: 392-396
  • 12 Dick W, Kluger P, Magerl F. et al. A new device for internal fixation of thoracolumbar and lumbar spine fractures: the 'fixateur interne'. Paraplegia 1985; 23: 225-232 DOI: 10.1038/sc.1985.38.
  • 13 Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clinical orthopaedics and related research 1984; 189: 125-141 (PMID: 6478690)
  • 14 Erichsen CJ, Heyde C-E, Josten C. et al. Percutaneous versus open posterior stabilization in AOSpine type A3 thoracolumbar fractures. BMC Musculoskeletal Disorders 2020; 21: 1-10
  • 15 Choma TJ, Pfeiffer FM, Swope RW. et al. Pedicle screw design and cement augmentation in osteoporotic vertebrae: effects of fenestrations and cement viscosity on fixation and extraction. Spine 2012; 37: E1628-1632 DOI: 10.1097/BRS.0b013e3182740e56.
  • 16 Kueny RA, Kolb JP, Lehmann W. et al. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. European Spine Journal 2014; 23: 2196-2202
  • 17 Chang M-C, Liu C-L, Chen T-H. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine 2008; 33: E317-E324
  • 18 Ryu KS, Park CK, Kim MC. et al. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. Journal of Neurosurgery: Spine 2002; 96: 56-61
  • 19 El Saman A, Kelm A, Meier S. et al. Intraoperative PEEP-ventilation during PMMA-injection for augmented pedicle screws: improvement of leakage rate in spinal surgery. European Journal of Trauma and Emergency Surgery 2013; 39: 461-468 DOI: 10.1007/s00068-013-0319-x. (PMID: 26815441)
  • 20 Hoppe S, Elfiky T, Keel MJB. et al. Lavage prior to vertebral augmentation reduces the risk for cement leakage. European spine journal 2016; 25: 3463-3469 DOI: 10.1007/s00586-015-4191-8. (PMID: 26275998)
  • 21 Vaccaro AR, Oner C, Kepler CK. et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 2013; 38: 2028-2037 DOI: 10.1097/BRS.0b013e3182a8a381. (PMID: 23970107)
  • 22 Spiegl UJ, Josten C, Devitt BM. et al. Incomplete burst fractures of the thoracolumbar spine: a review of literature. Eur Spine J 2017; DOI: 10.1007/s00586-017-5126-3.
  • 23 Spiegl UJA, Schnake KJ, Hartmann F. et al. Traumatic Fractures of the Thoracic Spine. Zeitschrift fur Orthopadie und Unfallchirurgie 2020; DOI: 10.1055/a-1144-3846.
  • 24 Lazaro BC, Deniz FE, Brasiliense LB. et al. Biomechanics of thoracic short versus long fixation after 3-column injury. Journal of neurosurgery Spine 2011; 14: 226-234 DOI: 10.3171/2010.10.SPINE09785.
  • 25 Baaj AA, Reyes PM, Yaqoobi AS. et al. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures: Presented at the 2010 Joint Spine Section Meeting. Journal of Neurosurgery: Spine 2011; 14: 192-197
  • 26 Tian N-F, Wu Y-S, Zhang X-L. et al. Fusion versus nonfusion for surgically treated thoracolumbar burst fractures: a meta-analysis. PloS one 2013; 8: e63995 DOI: 10.1371/journal.pone.0063995. (PMID: 23704968)
  • 27 Vaccaro AR, Lehman Jr. RA, Hurlbert RJ. et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 2005; 30: 2325-2333 DOI: 10.1097/01.brs.0000182986.43345.cb. (PMID: 16227897)
  • 28 Verheyden AP, Spiegl UJ, Ekkerlein H. et al. Treatment of fractures of the thoracolumbar spine: recommendations of the spine section of the German Society for Orthopaedics and Trauma (DGOU). Global spine journal 2018; 8 (Suppl. 02) 34S-45S DOI: 10.1177/2192568218771668. (PMID: 30210959)
  • 29 Sander AL, Laurer H, Lehnert T. et al. A clinically useful classification of traumatic intervertebral disk lesions. AJR American journal of roentgenology 2013; 200: 618-623 DOI: 10.2214/AJR.12.8748.
  • 30 McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures. Spine 1994; 19: 1741-1744
  • 31 Spiegl UJ, Jarvers JS, Heyde CE. et al. Delayed indications for additive ventral treatment of thoracolumbar burst fractures : What correction loss is to be expected. Der Unfallchirurg 2015; DOI: 10.1007/s00113-015-0056-1.
  • 32 Schnake KJ, Blattert TR, Hahn P. et al. Classification of osteoporotic thoracolumbar spine fractures: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global spine journal 2018; 8 (Suppl. 02) 46S-49S DOI: 10.1177/2192568217717972.
  • 33 Blattert TR, Schnake KJ, Gonschorek O. et al. Nonsurgical and Surgical Management of Osteoporotic Vertebral Body Fractures: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine Journal 2018; 8 (Suppl. 02) 50S-55S DOI: 10.1177/2192568217745823. (PMID: 30210962)
  • 34 Ullrich BW, Schnake KJ, Schenk P. et al. Clinical Evaluation of the Osteoporotic Fracture Treatment Score (OF-Score): Results of the Evaluation of the Osteoporotic Fracture Classification, Treatment Score and Therapy Recommendations (EOFTT) Study. Global Spine Journal 2023; 13 (Suppl. 01) 29S-35S DOI: 10.1177/21925682221148133. (PMID: 37084353)
  • 35 Ullrich BW, Schenk P, Scheyerer MJ. et al. Georg Schmorl prize of the German spine society (DWG) 2022: current treatment for inpatients with osteoporotic thoracolumbar fractures—results of the EOFTT study. European Spine Journal 2023; 00: 1-11
  • 36 Palmowski Y, Balmer S, Hu Z. et al. Relationship between the OF classification and radiological outcome of osteoporotic vertebral fractures after kyphoplasty. Global Spine Journal 2022; 12: 646-653 DOI: 10.1177/2192568220964051. (PMID: 33131331)
  • 37 Pumberger M, Schitz F, Bürger J. et al. Kyphoplasty restores the global sagittal balance of the spine independently from pain reduction. Scientific Reports 2020; 10: 1-6
  • 38 Marie-Hardy L, Mohsinaly Y, Pietton R. et al. Efficiency of a novel vertebral body augmentation system (Tektona) in non-osteoporotic spinal fractures. BMC Musculoskeletal Disorders 2022; 23: 356 DOI: 10.1186/s12891-022-05272-2. (PMID: 35418060)
  • 39 Spiegl U, Jarvers J-S, Heyde C-E. et al. Osteoporotic vertebral body fractures of the thoracolumbar spine: indications and techniques of a 360-stabilization. European Journal of Trauma and Emergency Surgery 2017; 43: 27-33 DOI: 10.1007/s00068-016-0751-9. (PMID: 28093624)
  • 40 Spiegl UJ, Weidling M, Nitsch V. et al. Restricted cement augmentation in unstable geriatric midthoracic fractures treated by long-segmental posterior stabilization leads to a comparable construct stability. Scientific reports 2021; 11: 23816 DOI: 10.1038/s41598-021-03336-2.
  • 41 Spiegl UJ, Weidling M, Schleifenbaum S. et al. Comparison of Long Segmental Dorsal Stabilization with Complete Versus Restricted Pedicle Screw Cement Augmentation in Unstable Osteoporotic Midthoracic Vertebral Body Fractures: A Biomechanical Study. World neurosurgery 2020; 143: e541-e549 DOI: 10.1016/j.wneu.2020.08.002.
  • 42 Bessant R, Keat A. How should clinicians manage osteoporosis in ankylosing spondylitis?. The Journal of rheumatology 2002; 29: 1511-1519 (PMID: 12136913)
  • 43 Kohler FC, Schenk P, Bechstedt-Schimske M. et al. Open versus minimally invasive fixation of thoracic and lumbar spine fractures in patients with ankylosing spinal diseases. European Journal of Trauma and Emergency Surgery 2021; 00: 1-11
  • 44 Lindtner RA, Kammerlander C, Goetzen M. et al. Fracture reduction by postoperative mobilisation for the treatment of hyperextension injuries of the thoracolumbar spine in patients with ankylosing spinal disorders. Archives of orthopaedic and trauma surgery 2017; 137: 531-541 DOI: 10.1007/s00402-017-2653-7. (PMID: 28224297)
  • 45 Spiegl U, Jarvers J-S, Glasmacher S. et al. Freigabe von Bewegungssegmenten nach dorsaler Stabilisierung. Der Unfallchirurg 2016; 9: 747-754 DOI: 10.1007/s00113-014-2675-3. (PMID: 25348505)
  • 46 Scheyerer MJ, Ullrich B, Osterhoff G. et al. Hounsfield units as a measure of bone density-applications in spine surgery. Der Unfallchirurg 2019; 122: 654-661 DOI: 10.1007/s00113-019-0658-0.
  • 47 Ullrich BW, Schwarz F, McLean AL. et al. Inter-rater reliability of Hounsfield units as a measure of bone density: applications in the treatment of thoracolumbar fractures. World Neurosurgery 2021; DOI: 10.1016/j.wneu.2021.11.043. (PMID: 34798342)
  • 48 Schnake KJ, Scheyerer MJ, Spiegl UJA. et al. Minimally invasive stabilization of thoracolumbar osteoporotic fractures. Der Unfallchirurg 2020; 123: 764-773 DOI: 10.1007/s00113-020-00835-1.