Int J Sports Med 2023; 44(09): 609-617
DOI: 10.1055/a-2035-8192
Review

Estrogen-related Receptor Signaling in Skeletal Muscle Fitness

Danesh Sopariwala
1   Institute of Molecular Medicine, University of Texas John P and Katherine G McGovern Medical School, Houston, United States
,
Hao Nguyen
1   Institute of Molecular Medicine, University of Texas John P and Katherine G McGovern Medical School, Houston, United States
,
Vihang Narkar
1   Institute of Molecular Medicine, University of Texas John P and Katherine G McGovern Medical School, Houston, United States
› Author Affiliations

Abstract

Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ – the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.



Publication History

Received: 02 September 2022

Accepted: 14 February 2023

Accepted Manuscript online:
14 February 2023

Article published online:
09 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mrowka R, Westphal A. Skeletal muscle in the fight against chronic diseases. Acta Physiol (Oxf) 2018; 223: e13086
  • 2 Powers SK, Lynch GS, Murphy KT. et al. Disease-induced skeletal muscle atrophy and fatigue. Med Sci Sports Exerc 2016; 48: 2307-2319
  • 3 Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev 2011; 91: 1447-1531
  • 4 Rubenstein AB, Smith GR, Raue U. et al. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep 2020; 10: 229
  • 5 Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013; 17: 162-184
  • 6 Hawley JA, Lundby C, Cotter JD. et al. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab 2018; 27: 962-976
  • 7 Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spring Harb Perspect Med 2018; 8: a029769
  • 8 Hyatt H, Deminice R, Yoshihara T. et al. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys 2019; 662: 49-60
  • 9 Larsson L, Degens H, Li M. et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 2019; 99: 427-511
  • 10 Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021; 12: 252-273
  • 11 Perry BD, Caldow MK, Brennan-Speranza TC. et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 2016; 22: 94-109
  • 12 Budzinska M, Zimna A, Kurpisz M. The role of mitochondria in Duchenne muscular dystrophy. J Physiol Pharmacol 2021; 72: 157-166
  • 13 Ennen JP, Verma M, Asakura A. Vascular-targeted therapies for Duchenne muscular dystrophy. Skelet Muscle 2013; 3: 9
  • 14 Hardee JP, Caldow MK, Chan ASM. et al. Dystrophin deficiency disrupts muscle clock expression and mitochondrial quality control in mdx mice. Am J Physiol Cell Physiol 2021; 321: C288-C296
  • 15 Moore TM, Lin AJ, Strumwasser AR. et al. Mitochondrial dysfunction is an early consequence of partial or complete dystrophin loss in mdx mice. Front Physiol 2020; 11: 690
  • 16 Podkalicka P, Mucha O, Kazirod K. et al. Age-dependent dysregulation of muscle vasculature and blood flow recovery after hindlimb ischemia in the mdx model of duchenne muscular dystrophy. Biomedicines 2021; 9: 481
  • 17 Shimizu-Motohashi Y, Asakura A. Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Front Physiol 2014; 5: 50
  • 18 Bhasin S, Jasuja R. Selective androgen receptor modulators as function promoting therapies. Curr Opin Clin Nutr Metab Care 2009; 12: 232-240
  • 19 Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 2009; 61: 373-393
  • 20 Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 2004; 7: 271-277
  • 21 Hevener AL, Ribas V, Moore TM. et al. The impact of skeletal muscle eralpha on mitochondrial function and metabolic health. Endocrinology 2020; 161: bqz017
  • 22 Kim YJ, Tamadon A, Park HT. et al. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2: 140-155
  • 23 Manickam R, Wahli W. Roles of Peroxisome Proliferator-Activated Receptor beta/delta in skeletal muscle physiology. Biochimie 2017; 136: 42-48
  • 24 Giguere V, Yang N, Segui P. et al. Identification of a new class of steroid hormone receptors. Nature 1988; 331: 91-94
  • 25 Deblois G, Giguere V. Functional and physiological genomics of estrogen-related receptors (ERRs) in health and disease. Biochim Biophys Acta 2011; 1812: 1032-1040
  • 26 Giguere V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 2008; 29: 677-696
  • 27 Bookout AL, Jeong Y, Downes M. et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006; 126: 789-799
  • 28 Dufour CR, Wilson BJ, Huss JM. et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 2007; 5: 345-356
  • 29 Busch BB, Stevens WC, Martin R. et al. Identification of a selective inverse agonist for the orphan nuclear receptor estrogen-related receptor alpha. J Med Chem 2004; 47: 5593-5596
  • 30 Yu DD, Forman BM. Identification of an agonist ligand for estrogen-related receptors ERRbeta/gamma. Bioorg Med Chem Lett 2005; 15: 1311-1313
  • 31 Xia H, Dufour CR, Giguere V. ERRalpha as a bridge between transcription and function: Role in liver metabolism and disease. Front Endocrinol (Lausanne) 2019; 10: 206
  • 32 Ahmadian M, Liu S, Reilly SM. et al. ERRgamma preserves brown fat innate thermogenic activity. Cell Rep 2018; 22: 2849-2859
  • 33 Brown EL, Hazen BC, Eury E. et al. Estrogen-related receptors mediate the adaptive response of brown adipose tissue to adrenergic stimulation. iScience 2018; 2: 221-237
  • 34 Alaynick WA, Kondo RP, Xie W. et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab 2007; 6: 13-24
  • 35 Sakamoto T, Batmanov K, Wan S. et al. The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat Commun 2022; 13: 1991
  • 36 Sakamoto T, Matsuura TR, Wan S. et al. A Critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res 2020; 126: 1685-1702
  • 37 Wang T, McDonald C, Petrenko NB. et al. Estrogen-related receptor alpha (ERRalpha) and ERRgamma are essential coordinators of cardiac metabolism and function. Mol Cell Biol 2015; 35: 1281-1298
  • 38 Dhillon P, Park J. Hurtado Del Pozo C et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab 2021; 33: e378
  • 39 Kim SY, Yang CS, Lee HM. et al. ESRRA (estrogen-related receptor alpha) is a key coordinator of transcriptional and post-translational activation of autophagy to promote innate host defense. Autophagy 2018; 14: 152-168
  • 40 Yuk JM, Kim TS, Kim SY. et al. Orphan nuclear receptor erralpha controls macrophage metabolic signaling and A20 expression to negatively regulate TLR-induced inflammation. Immunity 2015; 43: 80-91
  • 41 Narkar VA, Fan W, Downes M. et al. Exercise and PGC-1alpha-independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab 2011; 13: 283-293
  • 42 Rangwala SM, Wang X, Calvo JA. et al. Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. J Biol Chem 2010; 285: 22619-22629
  • 43 Cartoni R, Leger B, Hock MB. et al. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 2005; 567: 349-358
  • 44 Martin-Montalvo A, de Cabo R. Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid Redox Signal 2013; 19: 310-320
  • 45 Ranhotra HS. Up-regulation of orphan nuclear estrogen-related receptor alpha expression during long-term caloric restriction in mice. Mol Cell Biochem 2009; 332: 59-65
  • 46 Sopariwala DH, Likhite N, Pei G. et al. Estrogen-related receptor alpha is involved in angiogenesis and skeletal muscle revascularization in hindlimb ischemia. FASEB J 2021; 35: e21480
  • 47 Matsakas A, Yadav V, Lorca S. et al. Revascularization of ischemic skeletal muscle by estrogen-related receptor-gamma. Circ Res 2012; 110: 1087-1096
  • 48 Zhou J, Gauthier K, Ho JP. et al. Thyroid hormone receptor alpha regulates autophagy, mitochondrial biogenesis, and fatty acid use in skeletal muscle. Endocrinology 2021; 162: bqab112
  • 49 Kan J, Hu Y, Ge Y. et al. Declined expressions of vast mitochondria-related genes represented by CYCS and transcription factor ESRRA in skeletal muscle aging. Bioengineered 2021; 12: 3485-3502
  • 50 Remels AH, Pansters NA, Gosker HR. et al. Activation of alternative NF-kappaB signaling during recovery of disuse-induced loss of muscle oxidative phenotype. Am J Physiol Endocrinol Metab 2014; 306: E615-E626
  • 51 Wagatsuma A, Kotake N, Kawachi T. et al. Mitochondrial adaptations in skeletal muscle to hindlimb unloading. Mol Cell Biochem 2011; 350: 1-11
  • 52 Banerji CRS, Panamarova M, Pruller J. et al. Dynamic transcriptomic analysis reveals suppression of PGC1alpha/ERRalpha drives perturbed myogenesis in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2019; 28: 1244-1259
  • 53 Hardee JP, Martins KJB, Miotto PM. et al. Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity. Mol Metab 2021; 45: 101157
  • 54 Matsakas A, Yadav V, Lorca S. et al. Muscle ERRgamma mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J 2013; 27: 4004-4016
  • 55 Russell AP, Wada S, Vergani L. et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 2013; 49: 107-117
  • 56 Ahn J, Ha TY, Ahn J. et al. Undaria pinnatifida extract feeding increases exercise endurance and skeletal muscle mass by promoting oxidative muscle remodeling in mice. FASEB J 2020; 34: 8068-8081
  • 57 Ahn J, Son HJ, Seo HD. et al. gamma-oryzanol improves exercise endurance and muscle strength by upregulating PPARdelta and ERRgamma activity in aged mice. Mol Nutr Food Res 2021; 65: e2000652
  • 58 Kim MB, Kim C, Hwang JK. Standardized siegesbeckia orientalis l. extract increases exercise endurance through stimulation of mitochondrial biogenesis. J Med Food 2019; 22: 1159-1167
  • 59 Kitamura K, Erlangga JS, Tsukamoto S. et al. Daidzein promotes the expression of oxidative phosphorylation- and fatty acid oxidation-related genes via an estrogen-related receptor alpha pathway to decrease lipid accumulation in muscle cells. J Nutr Biochem 2020; 77: 108315
  • 60 Sopariwala DH, Rios AS, Park MK. et al. Estrogen-related receptor alpha is an AMPK-regulated factor that promotes ischemic muscle revascularization and recovery in diet-induced obese mice. FASEB Bioadv 2022; 4: 602-618
  • 61 Hu X, Xu X, Lu Z. et al. AMP activated protein kinase-alpha2 regulates expression of estrogen-related receptor-alpha, a metabolic transcription factor related to heart failure development. Hypertension 2011; 58: 696-703
  • 62 Zou C, Yu S, Xu Z. et al. ERRalpha augments HIF-1 signalling by directly interacting with HIF-1alpha in normoxic and hypoxic prostate cancer cells. J Pathol 2014; 233: 61-73
  • 63 Su P, Yu L, Mao X. et al. Role of HIF-1alpha/ERRalpha in enhancing cancer cell metabolism and promoting resistance of endometrial cancer cells to pyroptosis. Front Oncol 2022; 12: 881252
  • 64 Laganiere J, Tremblay GB, Dufour CR. et al. A polymorphic autoregulatory hormone response element in the human estrogen-related receptor alpha (ERRalpha) promoter dictates peroxisome proliferator-activated receptor gamma coactivator-1alpha control of ERRalpha expression. J Biol Chem 2004; 279: 18504-18510
  • 65 Zhang Z, Teng CT. Interplay between estrogen-related receptor alpha (ERRalpha) and gamma (ERRgamma) on the regulation of ERRalpha gene expression. Mol Cell Endocrinol 2007; 264: 128-141
  • 66 Cheng X, Du J, Shen L. et al. MiR-204-5p regulates C2C12 myoblast differentiation by targeting MEF2C and ERRgamma. Biomed Pharmacother 2018; 101: 528-535
  • 67 Zhang Y, Zhao YP, Gao YF. et al. Silencing miR-106b improves palmitic acid-induced mitochondrial dysfunction and insulin resistance in skeletal myocytes. Mol Med Rep 2015; 11: 3834-3841
  • 68 Chen Y, Zhou Y, Han F. et al. A novel miR-1291-ERRalpha-CPT1C axis modulates tumor cell proliferation, metabolism and tumorigenesis. Theranostics 2020; 10: 7193-7210
  • 69 Gao T, Deng M, Wang Q. MiRNA-320a inhibits trophoblast cell invasion by targeting estrogen-related receptor-gamma. J Obstet Gynaecol Res 2018; 44: 756-763
  • 70 Liu RH, Meng Q, Shi YP. et al. Regulatory role of microRNA-320a in the proliferation, migration, invasion, and apoptosis of trophoblasts and endothelial cells by targeting estrogen-related receptor gamma. J Cell Physiol 2018; 234: 682-691
  • 71 Lu M, Ding K, Zhang G. et al. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRgamma. Sci Rep 2015; 5: 8735
  • 72 Ren Y, Jiang H, Ma D. et al. Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Genet 2011; 20: 1074-1083
  • 73 Xia W, Yin J, Zhang S. et al. Parkin Modulates erralpha/enos signaling pathway in endothelial cells. Cell Physiol Biochem 2018; 49: 2022-2034
  • 74 Shires SE, Quiles JM, Najor RH. et al. Nuclear parkin activates the erralpha transcriptional program and drives widespread changes in gene expression following hypoxia. Sci Rep 2020; 10: 8499
  • 75 Yang Y, Li S, Li B. et al. FBXL10 promotes ERRalpha protein stability and proliferation of breast cancer cells by enhancing the mono-ubiquitylation of ERRalpha. Cancer Lett 2021; 502: 108-119
  • 76 Tremblay AM, Wilson BJ, Yang XJ. et al. Phosphorylation-dependent sumoylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity through a synergy control motif. Mol Endocrinol 2008; 22: 570-584
  • 77 Vu EH, Kraus RJ, Mertz JE. Phosphorylation-dependent sumoylation of estrogen-related receptor alpha1. Biochemistry 2007; 46: 9795-9804
  • 78 Wilson BJ, Tremblay AM, Deblois G. et al. An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol Endocrinol 2010; 24: 1349-1358
  • 79 Xia H, Scholtes C, Dufour CR. et al. Insulin action and resistance are dependent on a GSK3beta-FBXW7-ERRalpha transcriptional axis. Nat Commun 2022; 13: 2105
  • 80 Misra J, Kim DK, Jung YS. et al. O-GlcNAcylation of orphan nuclear receptor estrogen-related receptor gamma promotes hepatic gluconeogenesis. Diabetes 2016; 65: 2835-2848
  • 81 Araki M, Motojima K. Identification of ERRalpha as a specific partner of PGC-1alpha for the activation of PDK4 gene expression in muscle. FEBS J 2006; 273: 1669-1680
  • 82 Huss JM, Torra IP, Staels B. et al. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 2004; 24: 9079-9091
  • 83 Wende AR, Huss JM, Schaeffer PJ. et al. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: A mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005; 25: 10684-10694
  • 84 Gan Z, Rumsey J, Hazen BC. et al. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J Clin Invest 2013; 123: 2564-2575
  • 85 LaBarge S, McDonald M, Smith-Powell L. et al. Estrogen-related receptor-alpha (ERRalpha) deficiency in skeletal muscle impairs regeneration in response to injury. FASEB J 2014; 28: 1082-1097
  • 86 Murray J, Auwerx J, Huss JM. Impaired myogenesis in estrogen-related receptor gamma (ERRgamma)-deficient skeletal myocytes due to oxidative stress. FASEB J 2013; 27: 135-150
  • 87 Perry MC, Dufour CR, Tam IS. et al. Estrogen-related receptor-alpha coordinates transcriptional programs essential for exercise tolerance and muscle fitness. Mol Endocrinol 2014; 28: 2060-2071
  • 88 Cho Y, Hazen BC, Russell AP. et al. Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1)- and estrogen-related receptor (ERR)-induced regulator in muscle 1 (Perm1) is a tissue-specific regulator of oxidative capacity in skeletal muscle cells. J Biol Chem 2013; 288: 25207-25218
  • 89 Sladek R, Bader JA, Giguere V. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol 1997; 17: 5400-5409
  • 90 Sjogren RJO, Rizo-Roca D, Chibalin AV. et al. Branched-chain amino acid metabolism is regulated by ERRalpha in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia 2021; 64: 2077-2091
  • 91 Summermatter S, Santos G, Perez-Schindler J. et al. Skeletal muscle PGC-1alpha controls whole-body lactate homeostasis through estrogen-related receptor alpha-dependent activation of LDH B and repression of LDH A. Proc Natl Acad Sci USA 2013; 110: 8738-8743
  • 92 Liang X, Liu L, Fu T. et al. Exercise inducible lactate dehydrogenase b regulates mitochondrial function in skeletal muscle. J Biol Chem 2016; 291: 25306-25318
  • 93 Floriano JF, Emanueli C, Vega S. et al. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866: 130059
  • 94 Gorski T, De Bock K. Metabolic regulation of exercise-induced angiogenesis. Vasc Biol 2019; 1: H1-H8
  • 95 Hendrickse P, Degens H. The role of the microcirculation in muscle function and plasticity. J Muscle Res Cell Motil 2019; 40: 127-140
  • 96 Fan W, He N, Lin CS. et al. ERRgamma promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1alpha/beta-deficient muscle. Cell Rep 2018; 22: 2521-2529
  • 97 Chinsomboon J, Ruas J, Gupta RK. et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA 2009; 106: 21401-21406
  • 98 Likhite N, Yadav V, Milliman EJ. et al. Loss of estrogen-related receptor alpha facilitates angiogenesis in endothelial cells. Mol Cell Biol 2019; 39: e00411-e00418
  • 99 Murray J, Huss JM. Estrogen-related receptor alpha regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway. Am J Physiol Cell Physiol 2011; 301: C630-C645
  • 100 B'Chir W, Dufour CR, Ouellet C. et al. Divergent role of estrogen-related receptor alpha in lipid- and fasting-induced hepatic steatosis in mice. Endocrinology 2018; 159: 2153-2164
  • 101 Badin PM, Vila IK, Sopariwala DH. et al. Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice. Sci Rep 2016; 6: 26442
  • 102 Schnyder S, Kupr B, Handschin C. Coregulator-mediated control of skeletal muscle plasticity – A mini-review. Biochimie 2017; 136: 49-54
  • 103 Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev 2008; 18: 426-434
  • 104 Kang C, Li JiL. Role of PGC-1alpha signaling in skeletal muscle health and disease. Ann N Y Acad Sci 2012; 1271: 110-117
  • 105 Devarakonda S, Gupta K, Chalmers MJ. et al. Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1alpha/ERRgamma complex. Proc Natl Acad Sci USA 2011; 108: 18678-18683
  • 106 Mootha VK, Handschin C, Arlow D. et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004; 101: 6570-6575
  • 107 Kamei Y, Ohizumi H, Fujitani Y. et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 2003; 100: 12378-12383
  • 108 Rodriguez-Calvo R, Jove M, Coll T. et al. PGC-1beta down-regulation is associated with reduced ERRalpha activity and MCAD expression in skeletal muscle of senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 2006; 61: 773-780
  • 109 Shao D, Liu Y, Liu X. et al. PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 2010; 10: 516-527
  • 110 Rowe GC, Patten IS, Zsengeller ZK. et al. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep 2013; 3: 1449-1456
  • 111 Zechner C, Lai L, Zechner JF. et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 2010; 12: 633-642
  • 112 Perez-Schindler J, Summermatter S, Salatino S. et al. The corepressor NCoR1 antagonizes PGC-1alpha and estrogen-related receptor alpha in the regulation of skeletal muscle function and oxidative metabolism. Mol Cell Biol 2012; 32: 4913-4924
  • 113 Amat R, Planavila A, Chen SL. et al. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. J Biol Chem 2009; 284: 21872-21880
  • 114 Chalkiadaki A, Igarashi M, Nasamu AS. et al. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy. PLoS Genet 2014; 10: e1004490
  • 115 Ljubicic V, Burt M, Lunde JA. et al. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1alpha axis. Am J Physiol Cell Physiol 2014; 307: C66-C82
  • 116 Gerhart-Hines Z, Rodgers JT, Bare O. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007; 26: 1913-1923
  • 117 Canto C, Gerhart-Hines Z, Feige JN. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056-1060
  • 118 Cui X, Yao L, Yang X. et al. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Am J Physiol Endocrinol Metab 2017; 313: E493-E505
  • 119 Lin L, Chen K, Abdel Khalek W. et al. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS One 2014; 9: e85636
  • 120 Palacios OM, Carmona JJ, Michan S. et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 2009; 1: 771-783
  • 121 Cho Y, Hazen BC, Russell AP. et al. Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1)- and estrogen-related receptor (ERR)-induced regulator in muscle 1 (Perm1) is a tissue-specific regulator of oxidative capacity in skeletal muscle cells. J Biol Chem 2013; 288: 25207-25218
  • 122 Aksu-Menges E, Eylem CC, Nemutlu E. et al. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of Megaconial Congenital Muscular Dystrophy. Sci Rep 2021; 11: 18161
  • 123 Liu F, Lou J, Zhao D. et al. Dysferlinopathy: mitochondrial abnormalities in human skeletal muscle. Int J Neurosci 2016; 126: 499-509
  • 124 Wang SC, Myers S, Dooms C. et al. An ERRbeta/gamma agonist modulates GRalpha expression, and glucocorticoid responsive gene expression in skeletal muscle cells. Mol Cell Endocrinol 2010; 315: 146-152