Rofo 2023; 195(12): 1081-1096
DOI: 10.1055/a-2114-1350
Review

Cervical myelitis: a practical approach to its differential diagnosis on MR imaging

Zervikale Myelitis: praktische differentialdiagnostische Aspekte im MRT
Stefan Weidauer
Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
,
Elke Hattingen
Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
,
Christophe Théo Arendt
Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
› Author Affiliations

Abstract

Background Differential diagnosis of non-compressive cervical myelopathy encompasses a broad spectrum of inflammatory, infectious, vascular, neoplastic, neurodegenerative, and metabolic etiologies. Although the speed of symptom onset and clinical course seem to be specific for certain neurological diseases, lesion pattern on MR imaging is a key player to confirm diagnostic considerations.

Methods The differentiation between acute complete transverse myelitis and acute partial transverse myelitis makes it possible to distinguish between certain entities, with the latter often being the onset of multiple sclerosis. Typical medullary MRI lesion patterns include a) longitudinal extensive transverse myelitis, b) short-range ovoid and peripheral lesions, c) polio-like appearance with involvement of the anterior horns, and d) granulomatous nodular enhancement prototypes.

Results and Conclusion Cerebrospinal fluid analysis, blood culture tests, and autoimmune antibody testing are crucial for the correct interpretation of imaging findings. The combination of neuroradiological features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.

Key Points:

  • The differentiation of medullary lesion patterns, i. e., longitudinal extensive transverse, short ovoid and peripheral, polio-like, and granulomatous nodular, facilitates the diagnosis of myelitis.

  • Discrimination of acute complete and acute partial transverse myelitis makes it possible to categorize different entities, with the latter frequently being the overture of multiple sclerosis (MS).

  • Neuromyelitis optica spectrum disorders (NMOSD) may start as short transverse myelitis and should not be mistaken for MS.

  • The combination of imaging features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.

  • Additional brain imaging is mandatory in suspected demyelinating, systemic autoimmune, infectious, paraneoplastic, and metabolic diseases.

Zusammenfassung

Hintergrund Die Differentialdiagnose der nicht durch eine Kompression bedingten zervikalen Myelopathie umfasst ein breites Spektrum von inflammatorischen, infektiösen, vaskulären, neoplastischen, neurodegenerativen und metabolischen Ätiologien. Obschon Symptombeginn und klinischer Verlauf für einzelne neurologische Erkrankungen spezifisch erscheinen, nimmt die MRT eine Schlüsselrolle in der Bestätigung diagnostischer Überlegungen ein.

Methode Durch die Unterscheidung von akut kompletter und akut partieller transversaler Myelitis können verschiedene Entitäten differenziert werden, letztere öfter als Ouvertüre einer Multiplen Sklerose. Charakteristische medulläre Läsionsmuster sind a) die longitudinal extensive transversale Myelitis, b) kurzstreckige ovale und peripher im Rückenmarksquerschnitt gelegene Läsionen, c) polio-ähnliche Signalalterationen in den Vorderhörnern und d) granulomatös-nodulär anmutende Kontrastmittelanreicherungen.

Ergebnisse und Schlussfolgerung Die Fusion von charakteristischen medullären Läsionsmustern sowie klinischen und laborchemischen Befunden einschließlich der Liquoranalyse verbessert die differentialdiagnostische Abklärung und Zuordnung zervikaler Myelitiden.

Kernaussagen:

  • Die Unterscheidung verschiedener Läsionsmuster wie longitudinal extensiv transversal, kurzstreckig ovoid und peripher gelegen, polio-ähnlich und granulomatös-nodulär erleichtert die Differenzierung von Myelitiden.

  • Die Differenzierung zwischen akut kompletter und akut partieller transversaler Myelitis trennt verschiedene Ätiologien, letztere oft als Ouvertüre einer multiplen Sklerose (MS).

  • Die Neuromyelitis-optica-Spektrum-Erkrankung (NMOSD) kann als kurzstreckige Myelitis beginnen und darf nicht mit einer MS verwechselt werden.

  • Die Fusion von neuroradiologischen, neurologischen und laborchemischen Befunden einschließlich Liquoranalyse erhöht die diagnostische Sicherheit.

  • Bei Verdacht einer demyelinisierenden, systemisch autoimmunen, infektiösen, paraneoplastischen oder metabolischen Ätiologie ist eine zusätzliche zerebrale Bildgebung essentiell.

Zitierweise

  • Weidauer S, Hattingen E, Arendt CT. Cervical myelitis: a practical approach to its differential diagnosis on MR imaging. Fortschr Röntgenstr 2023; 195: 1081 – 1096



Publication History

Received: 23 January 2023

Accepted: 25 May 2023

Article published online:
06 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging 2014; 40: 1267-1279
  • 2 Weidauer S, Wagner M, Nichtweiß M. Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies. Clin Neuroradiol 2017; 27: 417-433
  • 3 Cacciaguerra L, Sechi E, Rocca MA. et al. Neuroimaging features in inflammatory myelopathies: A review. Front Neurol 2022; 13: 993645
  • 4 Yokota H, Tali ET. Spinal Infections. Neuroimag Clin N Am 2023; 33: 167-183
  • 5 Schmalstieg W, Weinshenker BG. Approach to acute or subacute myelopathy. Neurology 2010; 75: S2-S8
  • 6 Mariano R, Flanagan EP, Weinshenker GB. et al. A practical approach to the diagnosis of spinal cord lesions. Pract Neurol 2018; 18: 187-200
  • 7 Eckstein C, Saidha S, Levy M. A differential diagnosis of central nervous system demyelination: beyond multiple sclerosis. J Neurol 2012; 259: 801-816
  • 8 The Transverse Myelitis Consortium Working Group Members. Proposed diag-nostic criteria and nosology of acute transverse myelitis. Neurology 2002; 59: 499-505
  • 9 Scott TF. Nosology of idiopathic transverse myelitis syndromes. Acta Neurol Scand 2007; 115: 371-376
  • 10 Nichtweiß M, Weidauer S. Acute transverse myelitis: Clinical features, patho-physiology, and treatment options. In: Minagar A (ed). Neuroinflammation. London, San Diego, Cambridge, Oxford: Elsevier Academic Press; 2018: 141-161
  • 11 Weidauer S, Raab P, Hattingen E. Diagnostic Approach in Multiple Sclerosis with MRI: an Update. Clin Imaging 2021; 78: 276-285
  • 12 Zalewski L, Flanagan EP. Autoimmune and Paraneoplastic Myelopathies. Semin Neurol 2018; 38: 278-289
  • 13 Brownlee W, Hardy TA, Fazekas F. et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389: 1336-1346
  • 14 Flanagan EP, McKeon A, Lennon VA. et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 2011; 76: 2089-2095
  • 15 Flanagan EP, Keegan BM. Paraneoplastic myelopathy. Neurol Clin 2013; 31: 307-318
  • 16 Trebst C, Raab P, Voss EV. et al. Longitudinal extensive transverse myelitis – it’s not all neuromyelitis optica. Nat Rev Neurol 2011; 7: 688-698
  • 17 Sechi E, Krecke KN, Messina S. et al. Comparison of MRI Lesion Evolution in Different Central Nervous System Demyelinating Disorders. Neurology 2021; 97: e1097-e1109
  • 18 Das S, Ray BK, Chakraborty AP. et al. Persistent “MRI-negative” lupus myelitis-disease presentation, immunological profile and outcome. Front Neurol 2022; 13: 968322
  • 19 Sechi E, Krecke KN, Pittock SJ. et al. Frequency and characteristics of MRI-negative myelitis associated with MOG autoantibodies. Mult Scler 2021; 27: 303-308
  • 20 Holland NR. Acute myelopathy with normal imaging. J Child Neurol 2013; 28: 648-650
  • 21 Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am 2013; 21: 299-320
  • 22 Wingerchuk DM, Lennon VA, Lucchinetti CF. et al. The spectrum of neuromyelitis optica. Lancet Neurol 2007; 6: 805-815
  • 23 Wingerchuk DM, Banwell B, Bennett JL. et al. International Panel for NMO Diag-nosis. International consensus diagnostic criteria for neuromyelitis optica spec-trum disorders. Neurology 2015; 85: 177-189
  • 24 Krampla W, Aboul-Enein F, Jecel J. et al. Spinal cord lesions in patients with Neu-romyelitis optica: a retrospective long-term MRI follow-up study. Eur Radiol 2009; 19: 2535-2543
  • 25 Dubey D, Pittock SJ, Krecke KN. et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol 2019; 76: 301-309
  • 26 Jarius S, Ruprecht K, Kleiter I. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 2016; 13: 280
  • 27 Hegen H, Reindl M. Recent developments in MOG-IgG associated neurological disorders. Ther Adv Neurol Disord 2020; 13: 1-20
  • 28 Oertel F, Scheel M, Chien C. et al. Differential diagnostics of autoimmune inflammatory spinal cord diseases. Nervenarzt 2021; 92: 293-306
  • 29 Chien C, Scheel M, Schmitz-Hübsch T. et al. Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Mult Scler 2019; 14: 1926-1936
  • 30 Denève M, Biotti D, Patsoura S. et al. MRI features of demyelinating disease associated with anti-MOG antibodies in adults. J Neuroradiol 2019; 46: 312-318
  • 31 Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 2019; 15: 89-102
  • 32 Dubey D, Hinson SR, Jolliffe EA. et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J Neuroimmunol 2018; 321: 157-163
  • 33 Fang B, McKeon A, Hinson SR. et al. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy A Novel Meningoencephalomyelitis. JAMA Neurol 2016; 73: 1297-1307
  • 34 Flanagan EP, Hinson SR, Lennon VA. et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Ann Neurol 2017; 81: 298-309
  • 35 Iorio R, Damato V, Evoli A. et al. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry 2018; 89: 138-146
  • 36 Shan F, Long Y, Qui W. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy: A Review of the Literature. Front Immunol 2018; 9: 2802
  • 37 Alper G. Acute Disseminated Encephalomyelitis. J Child Neurol 2012; 27: 1408-1425
  • 38 Pohl D, Alper G, Van Haren K. et al. Acute disseminated encephalomyelitis. Up-dates on an inflammatory CNS syndrome. Neurology 2016; 87 (Suppl. 02) S38-S45
  • 39 Perez Giraldo GS, Ortiz Garcia JG. Immune-Mediated Disorders Affecting the Spinal Cord and the Spine. Curr Neurol Neurosci Rep 2021; 21: 3
  • 40 Garg RK, Paliwal VK. Spectrum of neurological complications following COVID 19 vaccination. Neurol Sci 2022; 43: 3-40
  • 41 Bennetto L, Scolding N. Inflammatory/post-infectious encephalomyelitis. J Neurol Neurosurg Psychiatry 2004; 75 (Suppl. 01) i22-i28
  • 42 Pekcevik Y, Mitchell CH, Mealy MA. et al. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult Scler 2016; 22: 302-311
  • 43 Miller DH, Weinshenker BG, Filippi M. et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 2008; 14: 1157-1174
  • 44 McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol 2011; 122: 381-400
  • 45 Pourmoghaddas Z, Sadeghizadeh A, Tara SZ. et al. Longitudinally extensive transverse myelitis as a sign of multisystem inflammatory syndrome following COVID-19 infection: A pediatric case report. J Neuroimmunol 2021; 360: 577704
  • 46 Pagenkopf C, Südmeyer M. A case of longitudinally extensive transverse myelitis following vaccination against Covid-19. J Neuroimmunol 2021; 358: 577606
  • 47 Sepahvand M, Yazdi N, Rohani M. et al. Cervical longitudinally extensive myelitis after vaccination with inactivated virus-based COVID-19 vaccine. Radiol Case Rep 2022; 17: 303-305
  • 48 Agmon-Levin N, Kivity S, Szyper-Kravitz M. et al. Transverse myelitis and vaccines: a multi-analysis. Lupus 2009; 18: 1198-1204
  • 49 Finke C, Schmidt W, Siebert E. et al. Etanercept-associated myelitis. Oxf Med Case Reports 2015; 2015 (03) 220-221
  • 50 Picca A, Berzero G, Bihan K. et al. Longitudinally extensive myelitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2021; 8: e967
  • 51 Rath JJG, Ronday HK, Wirtz PW. Acute transverse myelitis in psoriatic arthritis. J Neurol 2010; 257: 457-458
  • 52 Richard S, Fruchtman S, Scigliano E. et al. An immunological syndrome featuring transverse myelitis, Evans syndrome and pulmonary infiltrates after unrelated bone marrow transplant in a patient with severe aplastic anemia. Bone Marrow Transplant 2000; 26: 1225-1228
  • 53 Rodrigues CEM, de Carvalho JF. Clinical, radiologic, and therapeutic analysis of 14 patients with transverse myelitis associated with antiphospholipid syndrome: report of 4 cases and review of the literature. Semin Arthritis Rheum 2011; 40: 349-357
  • 54 Kitley J, Waters P, Woodhall M. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol 2014; 71: 276-283
  • 55 Salama S, Khan M, Shanechi A. et al. MRI differences between MOG antibody disease and AQP4 NMOSD. Mult Scler 2020; 26: 1854-1865
  • 56 Banks SA, Morris PP, Chen JJ. et al. Brainstem and cerebellar involvement in MOG IgG-associated disorder versus aquaporin-4-IgG and MS. J Neurol Neurosurg Psychiatry 2020; DOI: 10.1136/jnnp-2020-325121.
  • 57 Dutra BG, da Rocha AJ, Hoffmann Nunes R. et al. Neuromyelitis Optica Spec-trum Disorders: Spectrum of MR Imaging Findings and Their Differential Diagnosis. Radiographics 2018; 38: 169-193
  • 58 Flanagan EP, Kaufmann TJ, Krecke KN. et al. Discriminating long myelitis of Neuromyelitis Optica from sarcoidosis. Ann Neurol 2016; 79: 437-447
  • 59 Zalewsi NL, Morris PP, Weinshenker BG. et al. Ring-enhancing spinal cord le-sions in Neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2017; 88: 218-225
  • 60 Hyun JW, Kim SH, Jeong ICH. et al. Bright spotty lesions on the spinal cord: an additional MRI indicator of neuromyelitis optica spectrum disorder?. J Neurol Neurosurg Psychiatry 2015; 86: 1280-1282
  • 61 Hyun JW, Lee HL, Park J. et al. Brighter spotty lesions on spinal MRI help differentiate AQP4 antibody-positive NMOSD from MOGAD. Mult Scler 2022; 28: 989-992
  • 62 Yonezu T, Ito S, Mori M. et al. “Bright spotty lesions” on spinal magnetic resonance imaging differentiate neuromyelitis optica from multiple sclerosis. Mult Scler 2014; 20: 331-337
  • 63 Lucchinetti CF, Guo Y, Popescu BF. et al. The pathology of an autoimmune as-trocytopathy: lessons learned from neuromyelitis optica. Brain Pathology 2014; 24: 83-97
  • 64 Flanagan EP, Weinshenker BG, Krecke KN. et al. Short myelitis lesions in aqua-porin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol 2015; 72: 81-87
  • 65 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162-173
  • 66 Wattjes M, Ciccarelli O, Reich DS. et al. MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20: 653-670
  • 67 Jarius S, Paul F, Aktas O. et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 2018; 15: 134
  • 68 Rinaldi S, Davies A, Fehmi J. et al. Overlapping central and peripheral nervous system syndromes in MOG antibody-associated disorders. Neurol Neuroimmunol Neuroinflamm 2020; 8: e924
  • 69 Mariano R, Messina S, Kumar K. et al. Comparison of clinical outcomes of transverse myelitis among adults with myelin oligodendrocyte glycoprotein antibody vs aquaporin-4 antibody disease. JAMA Netw Open 2019; 2: e1912732
  • 70 Cacciaguerra L, Valsasina P, Mesaros S. et al. Spinal cord atrophy in neuro-myelitis optica spectrum disorders is spatially related to cord lesions and disability. Radiology 2020; 297: 154-163
  • 71 Xiao J, Chen X, Shang K. et al. Clinical, neuroradiological, diagnostic and prognostic profile of autoimmune glial fibrillary acidic protein astrocytopathy: A pooled analysis of 324 cases from published data and a single-center retrospective study. J Neuroimmunol 2021; 360: 577718
  • 72 Liu L, Fang B, Qiao Z. Clinical Manifestation, Auxiliary Examination Features, and Prognosis of GFAP Autoimmunity: A Chinese Cohort Study. Brain Sci 2022; 12: 1662
  • 73 Murphy OC, Salazar-Camelo A, Jimenez JA. et al. Clinical and MRI phenotypes of sarcoidosisassociated myelopathy. Neurol Neuroimmunol Neuroinflammation 2020; 7: e722
  • 74 Zalewski NL, Krecke KN, Weinshenker BG. et al. Central canal enhancement and the trident sign in spinal cord sarcoidosis. Neurology 2016; 87: 743-744
  • 75 Flanagan EP, Krecke KN, Marsh RW. et al. Specific pattern of gadolinium en-hancement in spondylotic myelopathy. Ann Neurol 2014; 76: 54-65
  • 76 Birnbaum J, Petri M, Thompson R. et al. Distinct subtypes of myelitis in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 3378-3387
  • 77 Kastenbauer S, Winkler F, Fesl G. et al. Acute severe spinal cord dysfunction in bacterial meningitis in adults. MRI findings suggest extensive myelitis. Arch Neurol 2001; 58: 806-810
  • 78 Weidauer S, Nichtweiß M, Hattingen E. et al. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology 2015; 57: 241-257
  • 79 Deshayes S, Bonhomme J, de La Blanchardière A. Neurotoxocariasis: a systematic literature review. Infection 2016; 44: 565-574
  • 80 Padilha I, Fonseca A, Pettengill A. et al. Pediatric multiple sclerosis: from clinical basis to imaging spectrum and differential diagnosis. Pediatr Radiol 2020; 50: 776-792
  • 81 Tartaglino LM, Friedman DP, Flanders AE. et al. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology 1995; 195: 725-732
  • 82 Oppenheimer DR. The cervical cord in multiple sclerosis. Neuropath Appl Neurob 1978; 4: 151-162
  • 83 Filippi M, Preziosa P, Banwell BL. et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2019; 142: 1858-1875
  • 84 Maloney JA, Mirsky DM, Messacar K. et al. MRI findings in children with acute flaccid paralysis and cranial nerve dysfunction occurring during the 2014 Enterovirus D68 outbreak. AJNR Am J Neuroradiol 2015; 36: 245-250
  • 85 Lebouteux MV, Franques J, Guillevin R. et al. Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance im-aging. Eur J Neurol 2014; 21: 1233-1241
  • 86 Gelfan S, Tarlov IM. Differential vulnerability of spinal cord structures to anoxia. J Neurophysiol 1955; 18: 170-188
  • 87 Martirosyan N, Feuerstein J, Theodore N. et al. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine 2011; 15: 238-251
  • 88 Turnbull IM, Brieg A, Hassler O. Blood supply of cervical spinal cord in man. A microangiographic cadaver study. J Neurosurg 1966; 24: 951-965
  • 89 Thron A, Stoeter P, Schiessl J. et al. Development of the Arterial Supply of the Spinal Cord Tissue Based on Radioanatomical and Histological Studies in Cattle. Clin Neuroradiol 2022; 32: 325-343
  • 90 Urban P, Gawehn J, Ringel K. “Man-in-the-barrel” syndrome. Clin Neuroradiol 2005; 15: 190-194
  • 91 Berg D, Mullges W, Klotzenburg M. et al. Man-in-the-barrel syndrome caused by cervical spinal cord infarction. Acta Neurol Scand 1998; 97: 417-419
  • 92 Kira J, Isobe N, Kawano Y. et al. Atopic myelitis with focal amyotrophy: a possible link to Hopkins syndrome. J Neurol Sci 2008; 269: 143-151
  • 93 Osoegawa M, Ochi H, Kikuchi H. et al. Eosinophilic myelitis associated with atopic diathesis: a combined neuroimaging and histopathological study. Acta Neuropathol 2003; 105: 289-295
  • 94 Kumar N. Metabolic and toxic myelopathies. Semin Neurol 2012; 32: 123-136
  • 95 van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134: 351-382
  • 96 Schulte EC, Hauer L, Kunz AB. et al. Systematic review of cases of acute myelitis in individuals with COVID-19. Eur J Neurol 2021; 28: 3230-3244
  • 97 Huang HY, Shah LM, McNally JS. et al. COVID-19-Associated Myelitis involving the Dorsal and Lateral White Matter Tracts: A Case Series and Review of the Literature. AJNR Am J Neuroradiol 2021; 42: 1912-1917
  • 98 Krings T. Vascular malformations of the spine and spinal cord. Clin Neuroradiol 2010; 20: 5-24
  • 99 Atkinson JL, Miller GM, Krauss WE. et al. Clinical and radiographic features of dural arteriovenous fistula, a treatable cause of myelopathy. Mayo Clin Proc 2001; 76: 1120-1130
  • 100 Sechi E, Flanagan EP. Spinal arteriovenous fistula’s often misdiagnosed as myelitis; can we stem the flow?. J Neurol Sci 2020; 413: 116868
  • 101 Takai K, Endo T, Seki T. et al. Congestive myelopathy due to craniocervical junction arteriovenous fistulas mimicking transverse myelitis: a multicenter study on 27 cases. J Neurol 2022; DOI: 10.1007/s00415-022-11536-7.
  • 102 Whittam D, Huda S, Gibbons E. et al. A case series of intracranial dural arterio-venous fistulae mimicking cervical myelitis: a diagnosis not to be missed. J Neurol 2021; 268: 4680-4686
  • 103 Nedeltchev K, Loher TJ, Stepper F. et al. Long-term outcome of acute spinal cord ischemia syndrome. Stroke 2004; 35: 560-565