Subscribe to RSS
DOI: 10.1055/a-2168-0527
Klimawandel und vektorübertragene Infektionen in EuropaTeil 2: Zeckenübertragene Infektionen
Climate change and vector-borne infections in Europe Part 2: Tick-borne infectionsZUSAMMENFASSUNG
Die zunehmenden Auswirkungen des Klimawandels und globaler Umweltveränderungen haben erhebliche Konsequenzen für das Infektionsrisiko von vektorübertragenen Erkrankungen. Dies wirkt sich insbesondere auch auf die temperaturabhängige Aktivität und das Vorkommen von Zecken in Europa aus. Veränderungen in den Verbreitungsgebieten der Vektoren, verbunden mit einem gesteigerten Übertragungsrisiko durch verhaltensbedingte Faktoren, führen zu einem Anstieg der durch Zecken übertragenen Erkrankungen, darunter Borreliose, Frühsommer-Meningoenzephalitis (FSME) und Tularämie. Insbesondere steigende Temperaturen und eine Zunahme der Luftfeuchtigkeit begünstigen die Vermehrung von Zecken. Vor diesem Hintergrund ist eine verstärkte Implementierung von Präventions- und Überwachungsmaßnahmen im Kontext zeckenübertragener Infektionskrankheiten von entscheidender Bedeutung.
ABSTRACT
The increasing impact of the climate crisis and further global environmental changes have important consequences for the infection risk posed by vector-borne diseases. This has a particular impact on the temperature-dependent activity and occurrence of ticks in Europe. Changes in the distribution patterns of vectors, coupled with an increased transmission risk due to behavioural factors, result in a rise in tick-borne diseases, including Lyme disease, tick-borne encephalitis (TBE), tularemia, and others. Specifically, rising temperatures and increased humidity favor the proliferation of ticks. The implementation of preventive and surveillance measures regarding tick-borne infectious diseases increasingly becomes a priority of public health.
Publication History
Article published online:
09 February 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Schönherr S, Jung L, Trawinski H. Klimawandel und vektorübertragene Infektionen in Europa. Teil 1: Überblick und mückenübertragene Infektionen. Flug u Reisemed 2023; 30: 233-244 DOI: 10.1055/a-2160-3024.
- 2 McIntyre KM, Setzkorn C, Hepworth PJ. et al Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe. Sci Rep 2017; 07: 7134 DOI: 10.1038/s41598-017-06948-9.
- 3 Gray JS, Dautel H, Estrada-Peña A. et al Effects of climate change on ticks and tick-borne diseases in europe. Interdiscip Perspect Infect Dis 2009: 593232 DOI: 10.1155/2009/593232
- 4 Hemmer CJ, Emmerich P, Loebermann M. et al Mücken und Zecken als Krankheitsvektoren: der Einfluss der Klimaerwärmung. Dtsch Med Wochenschr 2018; 143: 1714-1722 DOI: 10.1055/a-0653-6333.
- 5 Garcia-Vozmediano A, Krawczyk AI, Sprong H. et al Ticks climb the mountains: Ixodid tick infestation and infection by tick-borne pathogens in the Western Alps. Ticks Tick Borne Dis 2020; 11: 101489 DOI: 10.1016/j.ttbdis.2020.101489.
- 6 Sumilo D, Bormane A, Asokliene L. et al Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev Med Virol 2008; 18: 81-95 DOI: 10.1002/rmv.566.
- 7 Voyiatzaki C, Papailia SI, Venetikou MS. et al Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe-How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. Int J Environ Res Public Health 2022; 19: 6516 DOI: 10.3390/ijerph19116516.
- 8 Cunze S, Glock G, Kochmann J. et al Ticks on the move-climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res 2022; 121: 2241-2252 DOI: 10.1007/s00436-022-07556-x.
- 9 Beermann S, Dobler G, Faber M. et al Auswirkungen von Klimaveränderungen auf Vektor- und Nagetierassoziierte Infektionskrankheiten. J Health Monit 08 S3 36-66 DOI: 10.25646/11392.
- 10 Cunze S, Klimpel S.. Vektorassoziierte Infektionskrankheiten im Klimawandel. Im Internet https://dntds.de/publikationen.html
- 11 Pustijanac E, Buršić M, Talapko J. et al Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11: 1634 DOI: 10.3390/microorganisms11071634.
- 12 Chitimia-Dobler L, Rieß R, Kahl O. et al Ixodes inopinatus - Occurring also outside the Mediterranean region. Ticks Tick Borne Dis 2018; 09: 196-200 DOI: 10.1016/j.ttbdis.2017.09.004.
- 13 Hrazdilova K, Danek O, Hrbatova A. et al Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus. Parasit Vectors 2023; 16: 354 DOI: 10.1186/s13071-023-05971-2.
- 14 Rollins RE, Margos G, Brachmann A. et al German Ixodes inopinatus samples may not actually represent this tick species. Int J Parasitol 2023; 53: 751-761 DOI: 10.1016/j.ijpara.2023.06.007.
- 15 Hauck D, Springer A, Pachnicke S. et al Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitol Res 2019; 118: 3205-3216 DOI: 10.1007/s00436-019-06506-4.
- 16 Saegerman C, Humblet MF, Leandri M. et al First Expert Elicitation of Knowledge on Possible Drivers of Observed Increasing Human Cases of Tick-Borne Encephalitis in Europe. Viruses 2023; 15: 791 DOI: 10.3390/v15030791.
- 17 Robert Koch-Institut. FSME-Risikogebiete in Deutschland (Stand: Januar 2023). Epid Bull 9/2023
- 18 European Centre for Disease Prevention and Control. Tick-borne encephalitis. In: ECDC. Annual epidemiological report for 2020. Stockholm: ECDC; 2022
- 19 Jaenson TGT, Petersson EH, Jaenson DGE. et al The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11: 477 DOI: 10.1186/s13071-018-3057-4.
- 20 Alkishe AA, Peterson AT, Samy AM. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS One 2017; 12: e0189092 DOI: 10.1371/journal.pone.0189092.
- 21 Nah K, Bede-Fazekas Á, Trájer AJ. et al The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect Dis 2020; 20: 34 DOI: 10.1186/s12879-019-4734-4.
- 22 Wondim MA, Czupryna P, Pancewicz S. et al Epidemiological Trends of Trans-Boundary Tick-Borne Encephalitis in Europe, 2000–2019. Pathogens 2022; 11: 704 DOI: 10.3390/pathogens11060704.
- 23 Steinbrink A, Brugger K, Margos G. et al The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 2022; 121: 781-803 DOI: 10.1007/s00436-022-07445-3.
- 24 Keith K, Årestedt K, Tjernberg I. The relationship between the laboratory diagnosis of Lyme neuroborreliosis and climate factors in Kalmar County Sweden – an overview between 2008 and 2019. Eur J Clin Microbiol Infect Dis 2022; 41: 253-261 DOI: 10.1007/s10096-021-04374-4.
- 25 Goren A, Viljugrein H, Rivrud IM. et al The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proc Biol Sci 2023; 290: 20222420 DOI: 10.1098/rspb.2022.2420.
- 26 Li S, Gilbert L, Harrison PA. et al Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland. J R Soc Interface 2016; 13: 20160140 DOI: 10.1098/rsif.2016.0140.
- 27 Li S, Gilbert L, Vanwambeke SO. et al Lyme Disease Risks in Europe under Multiple Uncertain Drivers of Change. Environ Health Perspect 2019; 127: 67010 DOI: 10.1289/EHP4615.
- 28 Loewenich F von. Anaplasmose und Ehrlichiose. In: Stebut E von (Hrsg.). Reisedermatosen. Berlin Heidelberg: Springer; 2015
- 29 Matei IA, Estrada-Peña A, Cutler SJ. et al A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vectors 2019; 12: 599 DOI: 10.1186/s13071-019-3852-6.
- 30 Lacasta D, Lorenzo M, González JM. et al Epidemiological Study Related to the First Outbreak of Ovine Anaplasmosis in Spain. Animals 2021; 11: 2036 DOI: 10.3390/ani11072036.
- 31 Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. Lancet Infect Dis 2016; 16: 113-124 DOI: 10.1016/S1473-3099(15)00355-2.
- 32 Robert Koch-Institut. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2020. Im Internet. https://www.rki.de/DE/Content/Infekt/Jahrbuch/Jahrbuch_2020.pdf Stand: 20.09.2021
- 33 European Food Safety Authority, ECDC. The European Union One Health 2021 Zoonoses Report. EFSA Journal 2022; 20: e07666 DOI: 10.2903/j.efsa.2022.7666.
- 34 Rydén P, Sjöstedt A, Johansson A. Effects of climate change on tularaemia disease activity in Sweden. Glob Health Action 2009: 2 DOI: 10.3402/gha.v2i0.2063
- 35 Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 2006; 06: 203-214 DOI: 10.1016/S1473-3099(06)70435-2.
- 36 European Centre for Disease Prevention and Control. Hyalomma marginatum - Factsheet for experts. Im Internet. https://www.ecdc.europa.eu/en/disease-vectors/facts/tick-factsheets/hyalomma-marginatum Stand: 11.12.2023
- 37 European Centre for Disease Prevention and Control. Factsheet about Crimean-Congo haemorrhagic fever. Im Internet. https://www.ecdc.europa.eu/en/crimean-congo-haemorrhagic-fever/facts/factsheet Stand: 11.12.2023
- 38 Gargili A, Estrada-Peña A, Spengler JR. et al The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res 2017; 144: 93-119 DOI: 10.1016/j.antiviral.2017.05.010.
- 39 Portillo A, Palomar AM, Santibáñez P. et al Epidemiological Aspects of Crimean-Congo Hemorrhagic Fever in Western Europe: What about the Future?. Microorganisms 2021: 9 DOI: 10.3390/microorganisms9030649
- 40 Kampen H, Poltz W, Hartelt K. et al Detection of a questing Hyalomma marginatum marginatum adult female (Acari, Ixodidae) in southern Germany. Exp Appl Acarol 2007; 43: 227-231 DOI: 10.1007/s10493-007-9113-y.
- 41 Celina SS, Černý J, Samy AM. Mapping the potential distribution of the principal vector of Crimean-Congo haemorrhagic fever virus Hyalomma marginatum in the Old World. PLOS Negl Trop Dis 2023; 17: e0010855 DOI: 10.1371/journal.pntd.0010855.
- 42 Magyar N, Kis Z, Barabás É. et al New geographical area on the map of Crimean-Congo hemorrhagic fever virus: First serological evidence in the Hungarian population. Ticks Tick Borne Dis 2021; 12: 101555 DOI: 10.1016/j.ttbdis.2020.101555.
- 43 Chitimia-Dobler L, Schaper S, Rieß R. et al Imported Hyalomma ticks in Germany in 2018. Parasit Vectors 2019; 12: 134 DOI: 10.1186/s13071-019-3380-4.
- 44 Robert Koch-Institut. Antworten auf häufig gestellte Fragen zu Zecken, Zeckenstich, Infektion. Im Internet. https://www.rki.de/SharedDocs/FAQ/FSME/Zecken/Zecken.html Stand: 26.05.2023
- 45 Hagedorn P. Fund von Zecken der Gattung Hyalomma in Deutschland. Epid Bull 2019; 07: 70-71 DOI: 10.25646/5893.
- 46 Rumer L, Graser E, Hillebrand T. et al Rickettsia aeschlimannii in Hyalomma marginatum ticks, Germany. Emerg Infect Dis 2011; 17: 325-326 DOI: 10.3201/eid1702.100308.
- 47 MT im Dialog. Erster Verdachtsfall auf Fleckfieber-Übertragung in Deutschland. Im Internet. https://www.mtdialog.de/artikel/erster-verdachtsfall-auf-fleckfieber-uebertragung-in-deutschland Stand: 15.08.2019
- 48 European Centre for Disease Prevention and Control. Cases of Crimean–Congo haemorrhagic fever in the EU/EEA, 2013–present. Im Internet. https://www.ecdc.europa.eu/en/crimean-congo-haemorrhagic-fever/surveillance/cases-eu-since-2013 Stand: 12.12.2023
- 49 European Centre for Disease Prevention and Control. Weekly Communicable Disease Threats Report. 44/2023. Im Internet https://www.ecdc.europa.eu/sites/default/files/documents/communicable-disease-threats-report-week-44-2023.pdf
- 50 European Centre for Disease Prevention and Control. Hyalomma marginatum - current known distribution: August 2023 (Stand: 29.08.2023). Im Internet https://www.ecdc.europa.eu/en/publications-data/hyalomma-marginatum-current-known-distribution-august-2023
- 51 Földvári G, Široký P, Szekeres S. et al Dermacentor reticulatus: a vector on the rise. Parasit Vectors 2016; 09: 314 DOI: 10.1186/s13071-016-1599-x.
- 52 Leisewitz AL, Mrljak V, Dear JD. et al The Diverse Pathogenicity of Various Babesia Parasite Species That Infect Dogs. Pathogens 2023; 12: 1437 DOI: 10.3390/pathogens12121437.
- 53 Weingart C, Helm CS, Müller E. et al Autochthonous Babesia canis infections in 49 dogs in Germany. J Vet Intern Med 2023; 37: 140-149 DOI: 10.1111/jvim.16611.
- 54 Bauerfeind R. Zoonosen. 4. Aufl. Köln: Deutscher Ärzte-Verlag; 2013
- 55 Ličková M, Fumačová Havlíková S, Sláviková M. et al Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis 2020; 11: 101414 DOI: 10.1016/j.ttbdis.2020.101414.
- 56 Springer A, Lindau A, Probst J. et al Update and prognosis of Dermacentor distribution in Germany: Nationwide occurrence of Dermacentor reticulatus. Front Vet Sci 2022; 09: 1044597 DOI: 10.3389/fvets.2022.1044597.
- 57 Robert Koch-Institut. Dermacentor reticulatus als potenzieller Überträger von Infektionen beim Menschen. Epid Bull 29/2009
- 58 Hagedorn P, Mattert G, Gottwald S. et al Zecken und ihre Pathogene im Klimawandel (ZePaK). Umweltbundesamt, Umwelt + Mensch, Informationsdienst 1/2022
- 59 Probst J, Springer A, Topp AK. et al Winter activity of questing ticks (Ixodes ricinus and Dermacentor reticulatus) in Germany - Evidence from quasi-natural tick plots, field studies and a tick submission study. Ticks Tick Borne Dis 2023; 14: 102225 DOI: 10.1016/j.ttbdis.2023.102225.
- 60 Gray J, Dantas-Torres F, Estrada-Peña A. et al Systematics and ecology of the brown dog tick, Rhipicephalus sanguineus. Ticks Tick Borne Dis 2013; 04: 171-180 DOI: 10.1016/j.ttbdis.2012.12.003.
- 61 European Centre for Disease Prevention and Control. Epidemiological situation of rickettsioses in EU/EFTA countries – Technical Report. Stockholm: European Centre for Disease Prevention and Control; 2013. doi: 10.2900/92039
- 62 Beugnet F, Kolasinski M, Michelangeli PA. et al Mathematical modelling of the impact of climatic conditions in France on Rhipicephalus sanguineus tick activity and density since 1960. Geospat Health 2011; 05: 255-263 DOI: 10.4081/gh.2011.178.
- 63 Rubel F, Brugger K, Walter M. et al Geographical distribution, climate adaptation and vector competence of the Eurasian hard tick Haemaphysalis concinna. Ticks Tick Borne Dis 2018; 09: 1080-1089 DOI: 10.1016/j.ttbdis.2018.04.002.
- 64 Răileanu C, Tauchmann O, Silaghi C. Sympatric occurrence of Ixodes ricinus with Dermacentor reticulatus and Haemaphysalis concinna and the associated tick-borne pathogens near the German Baltic coast. Parasit Vectors 2022; 15: 65 DOI: 10.1186/s13071-022-05173-2.
- 65 Zu Z, Lin H, Hu Y. et al Seroprevalence and transmission of severe fever with thrombocytopenia syndrome virus in a coastal endemic area in Southeastern China. Ticks Tick Borne Dis 2024; 15: 102277 DOI: 10.1016/j.ttbdis.2023.102277.
- 66 Christodoulou M, Malli F, Tsaras K. et al A Narrative Review of Q Fever in Europe. Cureus 2023; 15: e38031 DOI: 10.7759/cureus.38031.