RSS-Feed abonnieren
DOI: 10.1055/a-2193-1379
Ultra-short echo time (UTE) MR imaging: A brief review on technical considerations and clinical applications
MR-Bildgebung mit ultrakurzen Echozeiten: ein kurzer Überblick zu methodischen Überlegungen und klinischen Anwendungen European Regional Development Fund (Research, Prevention, Diagnosis and Therapy of SAR)State of Saxony-Anhalt (Sachsen-Anhalt WISSENSCHAFT Medizinausstattung Cor)
Deutsche Forschungsgemeinschaft (INST 271/406–1 FUGG)

Abstract
Background
With the availability of MRI sequences with ultrashort echo times (UTE sequences), a signal can be gained from tissue, which was formerly only indirectly accessible. While already extensively employed in various research settings, the widespread transition of UTE imaging to clinical practice is just starting.
Methods
Based on a systematic literature search as well as knowledge gained through annual participation in conferences dedicated to advances in MRI, this review aims to give a brief overview of technical considerations and challenges of UTE imaging and summarizes the major areas of application of UTE imaging.
Results
UTE is already employed in clinical practice for structural lung imaging as well as the characterization of tissue composition and its alterations in selected musculoskeletal, cardiovascular, or neurodegenerative diseases. In specific contexts it can replace CT examinations with ionizing radiation and is especially attractive for pediatric patients and longitudinal monitoring of disease progression and treatment.
Conclusion
UTE imaging provides an interesting and very valuable tool for various clinical purposes and promises a multitude of new insights into tissue properties. While some challenges remain, ongoing adoption in the clinical routine can be expected, as UTE approaches provide a new contrast and capture a signal in tissue formerly invisible on MR imaging.
Key Points
-
UTE imaging gains relevance in clinical settings
-
UTE imaging is employed for the characterization of tissue composition and its alterations in selected musculoskeletal, cardiovascular, or neurodegenerative diseases
-
UTE imaging is employed in the clinical routine for structural lung imaging
-
UTE imaging promises a multitude of new insights into tissue properties
Citation Format
-
Slawig A, Rothe M, Deistung A et al. Ultra-short echo time (UTE) MR imaging: A brief review on technical considerations and clinical applications. Fortschr Röntgenstr 2024; 196: 671 – 681
Zusammenfassung
Hintergrund
Mit der Verfügbarkeit von MRT-Sequenzen mit Ultrakurzzeit-Echos (UTE-Sequenzen) wird die direkte Bildgebung von Gewebeanteilen möglich, die bisher nur indirekt als dunkle Region im Kontrast zu hellen Strukturen zugänglich waren. Während die UTE-Bildgebung in der Forschung bereits in großem Umfang eingesetzt wird, steht der Übergang in die klinische Praxis noch am Anfang.
Methoden
Basierend auf einer systematischen Literaturrecherche sowie Erkenntnissen, die durch die jährliche Teilnahme an Konferenzen zu Fortschritten in der MRT gewonnen wurden, soll dieses Review einen kurzen Überblick über die technischen Überlegungen und Herausforderungen der UTE-Bildgebung geben und die wichtigsten Anwendungsbereiche zusammenfassen, in denen diese bereits Einzug gehalten hat.
Ergebnisse
UTE-Bildgebung wird bereits in der Klinik zur strukturellen Lungenbildgebung sowie zur Charakterisierung der Gewebezusammensetzung und ihrer Veränderungen bei ausgewählten Erkrankungen des Bewegungsapparats, des Herz-Kreislauf-Systems oder bei neurodegenerativen Erkrankungen eingesetzt. Unter bestimmten Rahmenbedingungen kann es strahlungsintensive CT-Untersuchungen ersetzen und ist besonders attraktiv für pädiatrische Patienten und die Langzeitüberwachung von Krankheitsverläufen und Behandlungen.
Schlussfolgerung
Die UTE-Bildgebung ist ein vielversprechendes Verfahren für verschiedene klinische Zwecke und verspricht eine Vielzahl neuer Erkenntnisse zu Gewebeeigenschaften. Auch wenn noch einige Herausforderungen zu bewältigen sind, ist eine fortschreitende Etablierung der UTE-Bildgebung in der klinischen Routine abzusehen, da sie einen neuen Bildkontrast bietet und Signale im Gewebe erfassen kann, die der MR-Bildgebung bisher verschlossen geblieben sind.
Kernaussagen
-
UTE-Bildgebung gewinnt an Relevanz im klinischen Umfeld.
-
UTE-Bildgebung wird zur Charakterisierung der Gewebezusammensetzung und deren Veränderungen bei ausgewählten muskuloskelettalen, kardiovaskulären oder neurodegenerativen Erkrankungen eingesetzt.
-
UTE-Bildgebung wird in der Klinik zur strukturellen Lungenbildgebung eingesetzt.
-
UTE-Bildgebung verspricht eine Vielzahl neuer Erkenntnisse über Gewebeeigenschaften.
Publikationsverlauf
Eingereicht: 13. Juni 2023
Angenommen: 26. September 2023
Artikel online veröffentlicht:
23. November 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Geiger J, Zeimpekis KG, Jung A. et al. Clinical application of ultrashort echo-time MRI for lung pathologies in children. Clin Radiol 2021; 76: 708.e9-708.e17
- 2 Hatabu H, Ohno Y, Gefter WB. et al. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020; 297: 286-301
- 3 Renz DM, Herrmann K-H, Kraemer M. et al. Ultrashort echo time MRI of the lung in children and adolescents: comparison with non-enhanced computed tomography and standard post-contrast T1w MRI sequences. Eur Radiol 2022; 32: 1833-1842
- 4 Torres L, Kammerman J, Hahn AD. et al. “Structure-Function Imaging of Lung Disease Using Ultrashort Echo Time MRI”. Acad Radiol 2019; 26: 431-441
- 5 Veldhoen S, Heidenreich JF, Metz C. et al. Three-dimensional Ultrashort Echotime Magnetic Resonance Imaging for Combined Morphologic and Ventilation Imaging in Pediatric Patients With Pulmonary Disease. J Thorac Imaging 2021; 36: 43-51
- 6 Serai SD, Laor T, Dwek JR. et al. Feasibility of ultrashort TE (UTE) imaging of children at 1.5 T. Pediatr Radiol 2014; 44: 103-108
- 7 Hirsch FW, Sorge I, Vogel-Claussen J. et al. The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol 2020; 50: 734-749
- 8 Afsahi AM, Ma Y, Jang H. et al. Ultrashort Echo Time Magnetic Resonance Imaging Techniques: Met and Unmet Needs in Musculoskeletal Imaging. J Magn Reson Imaging JMRI 2022; 55: 1597-1612
- 9 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41: 870-883
- 10 Du J, Hermida JC, Diaz E. et al. Assessment of cortical bone with clinical and ultrashort echo time sequences. Magn Reson Med 2013; 70: 697-704
- 11 Ma Y-J, Jerban S, Jang H. et al. Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of Bone: An Update. Front Endocrinol 2020; 11
- 12 Wielpütz MO, Triphan SMF, Ohno Y. et al. Outracing Lung Signal Decay – Potential of Ultrashort Echo Time MRI. Fortschr Röntgenstr 2019; 191: 415-423
- 13 Voskrebenzev A, Vogel-Claussen J. Proton MRI of the Lung: How to Tame Scarce Protons and Fast Signal Decay. J Magn Reson Imaging 2021; 53: 1344-1357
- 14 Ma Y, Jang H, Jerban S. et al. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. Appl Phys Rev 2022; 9: 041303
- 15 Siemens Healthineers. Siemens Healthineers präsentiert zwei revolutionäre High-End-MRTs für Forschung und klinische Routine. Siemens Heal Shape 23 Press. Im Internet: Zugriff am 26. Juli 2023 unter: https://www.siemens-healthineers.com/deu/press/releases/cimaterrax
- 16 Hoogenraad F, Geerts-Ossevoort L, Harvey P. white-paper-ingenia-elition-vega-hp-gradients.pdf. Philips. Im Internet: Zugriff am 26. Juli 2023 unter: https://www.philips.com/c-dam/b2bhc/us/education/landing-pae/live-webinar-optimizing-mr-workflow/white-paper-ingenia-elition-vega-hp-gradients.pdf
- 17 Kelley D. Development of high-performance gradient systems. GE Healthc SIGNATM Pulse MR. Im Internet: Zugriff am 26. Juli 2023 unter: https://signapulse.gehealthcare.com/development-of-high-performance-gradient-sys-aea2l
- 18 Pauly JM, Conolly SM, Nishimura DG. et al. Slice-selective excitation for very short T2 species. In: Proceedings of the SMRM 8th Annual Meeting. 28. Amsterdam, The Netherlands: 1989
- 19 Conolly S, Nishimura D, Macovski A. et al. Variable-rate selective excitation. J Magn Reson 1969 1988; 78: 440-458
- 20 Froidevaux R, Weiger M, Brunner DO. et al. Filling the dead-time gap in zero echo time MRI: Principles compared. Magn Reson Med 2018; 79: 2036-2045
- 21 Weiger M, Pruessmann KP. MRI with Zero Echo Time. EMagRes Eds RK Harris RL Wasylishen 2012;
- 22 Wu Y, Dai G, Ackerman JL. et al. Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007; 57: 554-567
- 23 Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 2012; 67: 510-518
- 24 Dournes G, Grodzki D, Macey J. et al. Quiet Submillimeter MR Imaging of the Lung Is Feasible with a PETRA Sequence at 1.5 T. Radiology 2015; 276: 258-265
- 25 Weiger M, Brunner DO, Dietrich BE. et al. ZTE imaging in humans. Magn Reson Med 2013; 70: 328-332
- 26 Brittain J, Shankaranarayanan A, Ramana V. et al. Ultra-short TE imaging with single-digit (8 μs) TE. In: Proceedings of the 12th Annual Meeting of ISMRM. Kyoto, Japan: 2004
- 27 Nielles-Vallespin S, Weber M-A, Bock M. et al. 3D radial projection technique with ultrashort echo times for sodium MRI: Clinical applications in human brain and skeletal muscle. Magn Reson Med 2007; 57: 74-81
- 28 Johnson KM, Fain SB, Schiebler ML. et al. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 2013; 70: 1241-1250
- 29 Weiger M, Pruessmann KP. Short-T2 MRI: Principles and recent advances. Prog Nucl Magn Reson Spectrosc 2019; 114–115: 237-270
- 30 Whittall KP, Mackay AL, Graeb DA. et al. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34-43
- 31 Manhard MK, Harkins KD, Gochberg DF. et al. 30-Second bound and pore water concentration mapping of cortical bone using 2D UTE with optimized half-pulses. Magn Reson Med 2017; 77: 945-950
- 32 Jang H, Carl M, Ma Y. et al. Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study. Quant Imaging Med Surg 2020; 10: 89506-89906
- 33 Ma Y-J, Searleman AC, Jang H. et al. Whole-Brain Myelin Imaging Using 3D Double-Echo Sliding Inversion Recovery Ultrashort Echo Time (DESIRE UTE) MRI. Radiology 2020; 294: 362-374
- 34 Manhard MK, Horch RA, Gochberg DF. et al. In Vivo Quantitative MR Imaging of Bound and Pore Water in Cortical Bone. Radiology 2015; 277: 221-229
- 35 Horch RA, Gochberg DF, Nyman JS. et al. Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med 2012; 68: 1774-1784
- 36 Tyler DJ, Robson MD, Henkelman RM. et al. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: Technical considerations. J Magn Reson Imaging 2007; 25: 279-289
- 37 Lansdown DA, Ma CB. Clinical Utility of Advanced Imaging of the Knee. J Orthop Res 2020; 38: 473-482
- 38 Cheng KY, Moazamian D, Ma Y. et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skeletal Radiol 2023;
- 39 Xie Y, Liu S, Qu J. et al. Quantitative Magnetic Resonance Imaging UTE-T2* Mapping of Tendon Healing After Arthroscopic Rotator Cuff Repair: A Longitudinal Study. Am J Sports Med 2020; 48: 2677-2685
- 40 Xu Y, Murrell GAC. The Basic Science of Tendinopathy. Clin Orthop 2008; 466: 1528-1538
- 41 Chu CR, Williams AA, West RV. et al. Quantitative Magnetic Resonance Imaging UTE-T2* Mapping of Cartilage and Meniscus Healing After Anatomic Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2014; 42: 1847-1856
- 42 Loegering IF, Denning SC, Johnson KM. et al. Ultrashort echo time (UTE) imaging reveals a shift in bound water that is sensitive to sub-clinical tendinopathy in older adults. Skeletal Radiol 2021; 50: 107-113
- 43 Titchenal MR, Williams AA, Chehab EF. et al. Cartilage Subsurface Changes to Magnetic Resonance Imaging UTE-T2* 2 Years After Anterior Cruciate Ligament Reconstruction Correlate With Walking Mechanics Associated With Knee Osteoarthritis. Am J Sports Med 2018; 46: 565-572
- 44 Xia N, Cai Y, Kan Q. et al. The role of microscopic properties on cortical bone strength of femoral neck. BMC Musculoskelet Disord 2023; 24: 133
- 45 Hong AL, Ispiryan M, Padalkar MV. et al. MRI-derived bone porosity index correlates to bone composition and mechanical stiffness. Bone Rep 2019; 11: 100213
- 46 Jerban S, Ma Y, Dorthe EW. et al. Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling. Bone Rep 2019; 11: 100220
- 47 Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181: 1-14
- 48 Krämer M, Herzau B, Reichenbach JR. Segmentation and visualization of the human cranial bone by T2* approximation using ultra-short echo time (UTE) magnetic resonance imaging. Z Für Med Phys 2020; 30: 51-59
- 49 Wu H, Zhong Y, Nie Q. et al. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures. Eur Radiol 2016; 26: 138-146
- 50 Benlala I, Point S, Leung C. et al. Volumetric quantification of lung MR signal intensities using ultrashort TE as an automated score in cystic fibrosis. Eur Radiol 2020; 30: 5479-5488
- 51 Heidenreich JF, Weng AM, Metz C. et al. Three-dimensional Ultrashort Echo Time MRI for Functional Lung Imaging in Cystic Fibrosis. Radiology 2020; 296: 191-199
- 52 Dournes G, Walkup LL, Benlala I. et al. The Clinical Use of Lung MRI in Cystic Fibrosis: What, Now, How?. Chest 2021; 159: 2205-2217
- 53 Ohno Y, Koyama H, Yoshikawa T. et al. Standard-, Reduced-, and No-Dose Thin-Section Radiologic Examinations: Comparison of Capability for Nodule Detection and Nodule Type Assessment in Patients Suspected of Having Pulmonary Nodules. Radiology 2017; 284: 562-573
- 54 Burris NS, Johnson KM, Larson PEZ. et al. Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System. Radiology 2016; 278: 239-246
- 55 Ohno Y, Takenaka D, Yoshikawa T. et al. Efficacy of Ultrashort Echo Time Pulmonary MRI for Lung Nodule Detection and Lung-RADS Classification. Radiology 2022; 302: 697-706
- 56 Rubin GD, Ryerson CJ, Haramati LB. et al. The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement From the Fleischner Society. Chest 2020; 158: 106-116
- 57 Yang S, Zhang Y, Shen J. et al. Clinical Potential of UTE-MRI for Assessing COVID-19: Patient- and Lesion-Based Comparative Analysis. J Magn Reson Imaging 2020; 52: 397-406
- 58 Fauveau V, Jacobi A, Bernheim A. et al. Performance of spiral UTE-MRI of the lung in post-COVID patients. Magn Reson Imaging 2023; 96: 135-143
- 59 Waldman A, Rees JH, Brock CS. et al. MRI of the brain with ultra-short echo-time pulse sequences. Neuroradiology 2003; 45: 887-892
- 60 Lecar H, Ehrenstein G, Stillman I. Detection of Molecular Motion in Lyophilized Myelin by Nuclear Magnetic Resonance. Biophys J 1971; 11: 140-145
- 61 Du J, Ma G, Li S. et al. Ultrashort echo time (UTE) magnetic resonance imaging of the short T2 components in white matter of the brain using a clinical 3T scanner. NeuroImage 2014; 87: 32-41
- 62 Ma Y-J, Jang H, Chang EY. et al. Ultrashort echo time (UTE) magnetic resonance imaging of myelin: technical developments and challenges. Quant Imaging Med Surg 2020; 10: 1186-1203
- 63 Ma Y-J, Jang H, Wei Z. et al. Myelin Imaging in Human Brain Using a Short Repetition Time Adiabatic Inversion Recovery Prepared Ultrashort Echo Time (STAIR-UTE) MRI Sequence in Multiple Sclerosis. Radiology 2020; 297: 392-404
- 64 Sheth V, Shao H, Chen J. et al. Magnetic resonance imaging of myelin using ultrashort Echo time (UTE) pulse sequences: Phantom, specimen, volunteer and multiple sclerosis patient studies. NeuroImage 2016; 136: 37-44
- 65 Jang H, Ma Y-J, Chang EY. et al. Inversion Recovery Ultrashort TE MR Imaging of Myelin is Significantly Correlated with Disability in Patients with Multiple Sclerosis. Am J Neuroradiol 2021; 42: 868-874
- 66 Chan CF, Keenan NG, Nielles-Vallespin S. et al. Ultra-short echo time cardiovascular magnetic resonance of atherosclerotic carotid plaque. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 2010; 12: 17
- 67 Du J, Corbeil J, Znamirowski R. et al. Direct imaging and quantification of carotid plaque calcification: Imaging of CPC. Magn Reson Med 2011; 65: 1013-1020
- 68 Du J, Peterson M, Kansal N. et al. Mineralization in calcified plaque is like that of cortical bone--further evidence from ultrashort echo time (UTE) magnetic resonance imaging of carotid plaque calcification and cortical bone. Med Phys 2013; 40: 102301
- 69 Sharma S, Boujraf S, Bornstedt A. et al. Quantification of calcifications in endarterectomy samples by means of high-resolution ultra-short echo time imaging. Invest Radiol 2010; 45: 109-113
- 70 Achenbach S, Daniel WG. Current role of cardiac computed tomography. Herz 2007; 32: 97-107
- 71 Schuijf JD, Ambale-Venkatesh B, Kassai Y. et al. Cardiovascular ultrashort echo time to map fibrosis-promises and challenges. Br J Radiol 2019; 92: 20190465
- 72 Krämer M, Motaal AG, Herrmann K-H. et al. Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging. J Cardiovasc Magn Reson 2017; 19: 39
- 73 Zhang C, Dou W, Yu K. et al. The feasibility of non-contrast-enhanced zero echo time magnetic resonance angiography for characterization of intracranial atherosclerotic disease. Quant Imaging Med Surg 2021; 11: 2442-2452
- 74 Katsuki M, Narita N, Ozaki D. et al. Three tesla magnetic resonance angiography with ultrashort echo time describes the arteries near the cerebral aneurysm with clip and the peripheral cerebral arteries. Surg Neurol Int 2020; 11: 224
- 75 Takano N, Suzuki M, Irie R. et al. Non-Contrast-Enhanced Silent Scan MR Angiography of Intracranial Anterior Circulation Aneurysms Treated with a Low-Profile Visualized Intraluminal Support Device. Am J Neuroradiol 2017; 38: 1610-1616