Tierarztl Prax Ausg G Grosstiere Nutztiere 2023; 51(06): 346-357
DOI: 10.1055/a-2199-1754
Originalartikel

Nutzung der Haptoglobinkonzentration in Milch als Indikator für das Tiergesundheitsmonitoring bei Milchkühen

Use of milk haptoglobin concentration as an indicator in animal health monitoring of dairy cows
Sarah Plattner
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
,
Martin Kammer
2   Landeskuratorium der Erzeugerringe für tierische Veredelung Bayern e. V., München
,
Emil Walleser
3   University of Wisconsin – Madison, School of Veterinary Medicine, Department of Medical Science, USA
,
Stefan Plattner
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
,
Nicola Panne
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
,
Christian Baumgartner
4   ehemals Milchprüfring Bayern e.V., Wolnzach
,
Dörte Döpfer
3   University of Wisconsin – Madison, School of Veterinary Medicine, Department of Medical Science, USA
,
Rolf Mansfeld
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
› Institutsangaben

Zusammenfassung

Gegenstand und Ziel Ziel der vorliegenden Studie war es, die Zusammenhänge zwischen erhöhten Haptoglobin-Konzentrationen in Milch und klinischen sowie labordiagnostischen Parametern bei Kühen in der Frühlaktation zu untersuchen und Grenzwerte für die Unterscheidung zwischen gesunden und kranken Tieren zu ermitteln.

Material und Methoden Es wurden 1462 Milchkühe zwischen dem 5. und dem 65. Laktationstag auf 68 bayerischen Betrieben untersucht. Einmal wöchentlich wurden in einem Zeitraum von 7 Wochen je Betrieb Milch- und Blutproben gezogen und neben einer Körperkonditionsbeurteilung auch eine Messung der Rückenfettdicke via Ultraschall und eine vaginale Metricheck-Untersuchung zur Beurteilung der Uterusgesundheit durchgeführt. Die Milchproben wurden auf die Parameter Milchfett, Milcheiweiß, Laktose, Harnstoff, ß-Hydroxybutyrat und freie Fettsäuren (indirekte Messung, basierend auf IR-Spektren), Zellzahl und Milch-Haptoglobin untersucht. Die Blutproben wurden auf die Parameter Kreatinin, Aspartat-Aminotransferase, Gamma-Glutamyl-Transferase, Glutamat-Dehydrogenase, Gesamtprotein, Albumin, Kreatinkinase, ß-Hydroxybutyrat, freie Fettsäuren und Blut-Haptoglobin untersucht.

Für die Bestimmung von Grenzwerten für Haptoglobin wurden Clusteranalysen durchgeführt.

Ergebnisse Außer Milch-Haptoglobin (µg/ml) und Blut-Haptoglobin (µg/ml) gingen Zellzahl (Zellen/ml Milch), Milchfett (%), Milcheiweiß (%), freie Fettsäuren im Blut (mmol/l), Laktationsnummer, Laktationstage, Rasse, Jahreszeit und Tagesmilchmenge (kg) als signifikante Eingangsvariablen (p<0,005) in die Clusteranalysen ein. Unter Verwendung der Algorithmen k-means bzw. k-prototypes ergaben sich 5 (Cluster 1–5 M1) bzw. 4 verschiedene Cluster (Cluster 0–3 M2 und 0–3 B).

Für die Unterscheidung von gesunden und kranken Tieren wurde der Grenzwert 0,5 µg/ml Haptoglobin in Milch ermittelt.

Schlussfolgerungen und klinische Relevanz Da Milch ein leicht verfügbares Substrat darstellt, bietet sich die routinemäßige Haptoglobinbestimmung in der Milch als Parameter für das Tiergesundheitsmonitoring an. Mithilfe des ermittelten Grenzwertes können augenscheinlich gesunde Tiere mit subklinisch ablaufenden entzündlichen Prozessen schneller aufgefunden werden.

Abstract

Objective The aim of the present study was to investigate relationships between elevated haptoglobin concentrations in milk and clinical as well as laboratory parameters in early lactating dairy cows. Furthermore, cut-off values should be identified for the differentiation of healthy and affected animals.

Material and methods 1462 dairy cows between 5.–65. days in milk were examined on 68 Bavarian farms. Milk and blood samples were taken once a week for a 7-week period per farm and body-condition-scoring, backfat thickness measurement and Metricheck examination, to evaluate uterine health, were performed. Milk samples were analysed for milk fat, milk protein, lactose, urea, ß-hydroxybutyrate and non-esterified fatty acids (indirect measurement, based on IR spectra), cell count, and milk haptoglobin. Blood samples were analysed for creatinine, aspartate aminotransferase, gamma-glutamyl transferase, glutamate dehydrogenase, total protein, albumin, creatine kinase, ß-hydroxybutyrate, non-esterified fatty acids, and blood haptoglobin.

Cluster analyses were performed to determine cut-off values for haptoglobin.

Results Besides milk haptoglobin (µg/ml) and blood haptoglobin (µg/ml), cell count (cells/ml milk), milk fat (%), milk protein (%), non-esterified fatty acids in blood (mmol/l), lactation number, days in milk, breed, season, and milk yield (kg) were included as significant input variables (p<0.005) in the cluster analyses. Cluster analysis, using k-means resp. k-prototypes algorithms, resulted in 5 (clusters 1–5 M1) resp. 4 different clusters (clusters 0–3 M2 and 0–3 B).

A cut-off value of 0.5 µg/ml haptoglobin in milk was determined for the differentiation of healthy and affected animals.

Conclusion and clinical relevance As milk is an easily available substrate, routine determination of haptoglobin in milk might be a suitable parameter for animal health monitoring. Using the detected cut-off value, apparently healthy animals with subclinical inflammatory diseases can be identified more quickly.



Publikationsverlauf

Eingereicht: 21. Februar 2023

Angenommen: 10. April 2023

Artikel online veröffentlicht:
06. Dezember 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Eckersall P, Conner J. Bovine and canine acute phase proteins. Vet Res Commun 1988; 12: 169-178
  • 2 Ceciliani F, Ceron JJ, Eckersall PD. et al. Acute phase proteins in ruminants. J Proteomics 2012; 75: 4207-4231 DOI: 10.1016/j.jprot.2012.04.004.
  • 3 Eckersall P, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet J 2010; 185: 23-27
  • 4 Tothova C, Nagy O, Kovac G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: a review. Vet Med (Praha) 2014; 59: 163-180 DOI: 10.17221/7478-vetmed.
  • 5 Tóthová C, Nagy O, Seidel H. et al. Acute phase proteins as markers of diseases in farm animals. Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary. Diseases 2011; 231-258
  • 6 Dobryszycka W. Biological functions of haptoglobin-new pieces to an old puzzle. Eur J Clin Chem Clin Biochem 1997; 35: 647-654
  • 7 Jain S, Gautam V, Naseem S. Acute-phase proteins: As diagnostic tool. J Pharm Bioallied Sci 2011; 3: 118
  • 8 Young C, Eckersall P, Saini P. et al. Validation of immunoassays for bovine haptoglobin. Vet Immunol Immunopathol 1995; 49: 1-13
  • 9 Hajek F, Reus A, Gruber S. et al. Use of serum haptoglobin concentration as an indicator in animal health monitoring of dairy cows. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48: 228-238
  • 10 Horadagoda NU, Knox KM, Gibbs HA. et al. Acute phase proteins in cattle: discrimination between acute and chronic inflammation. Vet Rec 1999; 144: 437-441 DOI: 10.1136/vr.144.16.437.
  • 11 Chan JPW, Chang CC, Hsu WL. et al. Association of increased serum acute-phase protein concentrations with reproductive performance in dairy cows with postpartum metritis. Vet Clin Pathol 2010; 39: 72-78
  • 12 Sheldon I, Noakes D, Rycroft A. et al. Acute phase protein responses to uterine bacterial contamination in caftle after calving. Vet Rec 2001; 148: 172-175
  • 13 Huzzey J, Duffield T, LeBlanc S. et al. Haptoglobin as an early indicator of metritis. J Dairy Sci 2009; 92: 621-625
  • 14 Tadich N, Tejeda C, Bastias S. et al. Nociceptive threshold, blood constituents and physiological values in 213 cows with locomotion scores ranging from normal to severely lame. Vet J 2013; 197: 401-405 DOI: 10.1016/j.tvjl.2013.01.029.
  • 15 Tóthová C, Nagy O, Seidel H. et al. The influence of hoof diseases on the concentrations of some acute phase proteins and other variables of the protein profile in heifers. Acta Vet Brno 2011; 61: 141-150
  • 16 El-Deeb WM, El-Bahr SM. Biomarkers of ketosis in dairy cows at postparturient period: acute phase proteins and pro-inflammatory cytokines. Vet Arh 2017; 87: 431-440 DOI: 10.24099/vet.arhiv.160126c.
  • 17 Abuajamieh M, Kvidera SK, Fernandez MVS. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. Elsevier Ltd; 2016
  • 18 Debski B, Nowicki T, Zalewski W. et al. Evaluation of acute phase proteins in clinically healthy dairy cows in perinatal period and during lactation. Pol J Vet Sci 2016; 19: 519-523 DOI: 10.1515/pjvs-2016-0065.
  • 19 Uchida E, Katoh N, Takahashi K. Appearance of Haptoglobin in Serum From Cows at Parturition. J. Vet. Med. Sci 1993; 55: 893-894
  • 20 Humblet MF, Guyot H, Boudry B. et al. Relationship between haptoglobin, serum amyloid A, and clinical status in a survey of dairy herds during a 6-month period. Vet Clin Pathol 2006; 35: 188-193
  • 21 Lomborg S, Nielsen L, Heegaard PM. et al. Acute phase proteins in cattle after exposure to complex stress. Vet Res Commun 2008; 32: 575-582
  • 22 Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448-454
  • 23 Nielsen BH, Jacobsen S, Andersen P. et al. Acute phase protein concentrations in serum and milk from healthy cows, cows with clinical mastitis and cows with extramammary inflammatory conditions. Vet Rec 2004; 154: 361-365
  • 24 Eckersall PD, Young FJ, McComb C. et al. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Vet Rec 2001; 148: 35-41 DOI: 10.1136/vr.148.2.35.
  • 25 Kovac G, Popelkova M, Tkacikova L. et al. Interrelationship between somatic cell count and acute phase proteins in serum and milk of dairy cows. Acta Vet Brno 2007; 76: 51-57 DOI: 10.2754/avb200776010051.
  • 26 Hiss S, Mielenz M, Bruckmaier RM. et al. Haptoglobin concentrations in blood and milk after endotoxin challenge and quantification of mammary Hp mRNA expression. J Dairy Sci 2004; 87: 3778-3784 DOI: 10.3168/jds.S0022-0302(04)73516-X.
  • 27 Lai I-H, Tsao JH, Lu YP. et al. Neutrophils as one of the major haptoglobin sources in mastitis affected milk. Vet Res 2009; 40: 1
  • 28 Wollowski L, Heuwieser W, Kossatz A. et al. The value of the biomarkers cathelicidin, milk amyloid A, and haptoglobin to diagnose and classify clinical and subclinical mastitis. J Dairy Sci 2021; 104: 2106-2122
  • 29 Wenz JR, Fox L, Muller F. et al. Factors associated with concentrations of select cytokine and acute phase proteins in dairy cows with naturally occurring clinical mastitis. J Dairy Sci 2010; 93: 2458-2470
  • 30 Kalmus P, Simojoki H, Pyörälä S. et al. Milk haptoglobin, milk amyloid A, and N-acetyl-β-d-glucosaminidase activity in bovines with naturally occurring clinical mastitis diagnosed with a quantitative PCR test. J Dairy Sci 2013; 96: 3662-3670
  • 31 Pyörälä S, Hovinen M, Simojoki H. et al. Acute phase proteins in milk in naturally acquired bovine mastitis caused by different pathogens. Vet Rec 2011; 168: 535-535
  • 32 Hiss S, Mueller U, Neu-Zahren A. et al. Haptoglobin and lactate dehydrogenase measurements in milk for the identification of subclinically diseased udder quarters. Vet Med (Praha) 2007; 52: 245
  • 33 Team RC. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www R-project org/ 2013
  • 34 Van Rossum G, Drake F. Python 3 reference manual createspace. Scotts Valley, CA. 2009
  • 35 Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Discov 1998; 2: 283-304
  • 36 Huang Z. Clustering large data sets with mixed numeric and categorical values. In, Proceedings of the 1st pacific-asia conference on knowledge discovery and data mining,(PAKDD): Citeseer 1997; 21-34
  • 37 Thomas FC, Waterston M, Hastie P. et al. Early post parturient changes in milk acute phase proteins. J Dairy Res 2016; 83: 352-359 DOI: 10.1017/S0022029916000297.
  • 38 Schmitt R, Pieper L, Gonzalez-Grajales LA. et al. Evaluation of different acute-phase proteins for herd health diagnostics in early postpartum Holstein Friesian dairy cows. J Dairy Res 2021; 1-5
  • 39 Åkerstedt M, Waller KP, Sternesjö Å. Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples. J Dairy Res 2007; 74: 198-203
  • 40 Thomas FC, Waterston M, Hastie P. et al. The major acute phase proteins of bovine milk in a commercial dairy herd. BMC Vet Res 2015; 11: 1-10