J Knee Surg
DOI: 10.1055/a-2216-5186
Special Focus Section

Functional Imaging of the Knee—A Comprehensive Review

1   Department of Radiology, University of Missouri Health Care, Columbia, Missouri
,
Brooke Wakeman
1   Department of Radiology, University of Missouri Health Care, Columbia, Missouri
,
2   Musculoskeletal Imaging Division, Department of Radiology, Faculty of Clinical Radiology, University of Missouri System, Columbia, Missouri
› Author Affiliations

Abstract

Knee pain is a common presenting problem in the general population. Radiographs and magnetic resonance imaging (MRI) are the cornerstones of imaging in current clinical practice. With advancements in technology, there has been increasing utilization of other modalities to evaluate knee disorders. Dynamic assessment utilizing computed tomography and portable ultrasounds have demonstrated the capacity to accurately assess and reproducibly quantify kinematics of knee disorders. Cartilage physiology can be evaluated with MRI. Emerging research has even demonstrated novel musculoskeletal applications of positron emission tomography to evaluate anterior cruciate ligament graft metabolic activity following reconstruction. As technology continues to evolve and traditional ways are improved upon, future comparative studies will elucidate the distinct advantages of the various modalities. Although radiology is still primarily an anatomic specialty, there is immense potential for functional imaging to be the standard of care. This review focuses on the most common musculoskeletal applications of functional imaging as well as future utilization.



Publication History

Received: 31 May 2023

Accepted: 18 November 2023

Accepted Manuscript online:
22 November 2023

Article published online:
22 December 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Papannagari R, Gill TJ, Defrate LE, Moses JM, Petruska AJ, Li G. In vivo kinematics of the knee after anterior cruciate ligament reconstruction: a clinical and functional evaluation. Am J Sports Med 2006; 34 (12) 2006-2012
  • 2 Lopes C, Vilaca A, Rocha C, Mendes J. Knee positioning systems for X-ray environment: a literature review. Phys Eng Sci Med 2023; 46 (01) 45-55
  • 3 Geeslin AG, Lemos DF, Geeslin MG. Knee ligament imaging: preoperative and postoperative evaluation. Clin Sports Med 2021; 40 (04) 657-675
  • 4 Heuck A, Woertler K. Posttreatment imaging of the knee: cruciate ligaments and menisci. Semin Musculoskelet Radiol 2022; 26 (03) 230-241
  • 5 Murer M, Falkowski AL, Hirschmann A, Amsler F, Hirschmann MT. Threshold values for stress radiographs in unstable knees after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2021; 29 (02) 422-428
  • 6 Kappel A, Mortensen JF, Nielsen PT, Odgaard A, Laursen M. Reliability of stress radiography in the assessment of coronal laxity following total knee arthroplasty. Knee 2020; 27 (01) 221-228
  • 7 Mizu-Uchi H, Kawahara S, Ishibashi S, Colwell Jr CW, Nakashima Y, D'Lima DD. Postoperative valgus laxity and medial pivot kinematics are significantly associated with better clinical outcomes. J Arthroplasty 2022; 37 (6S): S187-S192
  • 8 Tashman S, Araki D. Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function. Clin Sports Med 2013; 32 (01) 47-59
  • 9 Li G, Van de Velde SK, Bingham JT. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 2008; 41 (07) 1616-1622
  • 10 Zhu Z, Li G. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Comput Methods Biomech Biomed Engin 2012; 15 (11) 1245-1256
  • 11 Hoshino Y, Tashman S. Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc 2012; 20 (07) 1268-1275
  • 12 Hoshino Y, Fu FH, Irrgang JJ, Tashman S. Can joint contact dynamics be restored by anterior cruciate ligament reconstruction?. Clin Orthop Relat Res 2013; 471 (09) 2924-2931
  • 13 Hofbauer M, Thorhauer ED, Abebe E, Bey M, Tashman S. Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42 (11) 2715-2721
  • 14 Lopes C, Vilaca A, Rocha C, Mendes J. Knee positioning systems for X-ray environment: a literature review. Phys Eng Sci Med 2023; 46 (01) 45-55
  • 15 Foley R, Fessell D, Yablon C, Nadig J, Brandon C, Jacobson J. Sonography of traumatic quadriceps tendon tears with surgical correlation. J Ultrasound Med 2015; 34 (05) 805-810
  • 16 Spalazzi JP, Gallina J, Fung-Kee-Fung SD, Konofagou EE, Lu HH. Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions. J Orthop Res 2006; 24 (10) 2001-2010
  • 17 Petscavage-Thomas J. Clinical applications of dynamic functional musculoskeletal ultrasound. RMI 2014; ;(February): 27
  • 18 Nogueira-Barbosa MH, Gregio-Junior E, Lorenzato MM. et al. Ultrasound assessment of medial meniscal extrusion: a validation study using MRI as reference standard. AJR Am J Roentgenol 2015; 204 (03) 584-588
  • 19 Crema MD, Roemer FW, Felson DT. et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis study. Radiology 2012; 264 (02) 494-503
  • 20 Acebes C, Romero FI, Contreras MA, Mahillo I, Herrero-Beaumont G. Dynamic ultrasound assessment of medial meniscal subluxation in knee osteoarthritis. Rheumatology (Oxford) 2013; 52 (08) 1443-1447
  • 21 Falkowski AL, Jacobson JA, Cresswell M, Bedi A, Kalia V, Zhang B. Medial meniscal extrusion evaluation with weight-bearing ultrasound: correlation with MR imaging findings and reported symptoms: correlation with MR imaging findings and reported symptoms. J Ultrasound Med 2022; 41 (11) 2867-2875
  • 22 Karpinski K, Diermeier T, Willinger L, Imhoff AB, Achtnich A, Petersen W. No dynamic extrusion of the medial meniscus in ultrasound examination in patients with confirmed root tear lesion. Knee Surg Sports Traumatol Arthrosc 2019; 27 (10) 3311-3317
  • 23 Verdonk P, Depaepe Y, Desmyter S. et al. Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 2004; 12 (05) 411-419
  • 24 Achtnich A, Petersen W, Willinger L. et al. Medial meniscus extrusion increases with age and BMI and is depending on different loading conditions. Knee Surg Sports Traumatol Arthrosc 2018; 26 (08) 2282-2288
  • 25 Rowland G, Mar D, McIff T, Nelson J. Evaluation of meniscal extrusion with posterior root disruption and repair using ultrasound. Knee 2016; 23 (04) 627-630
  • 26 Dejour DH, Mesnard G, Giovannetti de Sanctis E. Updated treatment guidelines for patellar instability: “un menu à la carte”. J Exp Orthop 2021; 8 (01) 109
  • 27 Dunning H, van de Groes SAW, Buckens CF, Prokop M, Verdonschot N, Janssen D. Fully automatic extraction of knee kinematics from dynamic CT imaging; normative tibiofemoral and patellofemoral kinematics of 100 healthy volunteers. Knee 2023; 41: 9-17
  • 28 Tanaka MJ, Elias JJ, Williams AA, Demehri S, Cosgarea AJ. Characterization of patellar maltracking using dynamic kinematic CT imaging in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 2016; 24 (11) 3634-3641
  • 29 Elias JJ, Carrino JA, Saranathan A, Guseila LM, Tanaka MJ, Cosgarea AJ. Variations in kinematics and function following patellar stabilization including tibial tuberosity realignment. Knee Surg Sports Traumatol Arthrosc 2014; 22 (10) 2350-2356
  • 30 Gobbi RG, Demange MK, de Ávila LFR. et al. Patellar tracking after isolated medial patellofemoral ligament reconstruction: dynamic evaluation using computed tomography. Knee Surg Sports Traumatol Arthrosc 2017; 25 (10) 3197-3205
  • 31 Forsberg D, Lindblom M, Quick P, Gauffin H. Quantitative analysis of the patellofemoral motion pattern using semi-automatic processing of 4D CT data. Int J CARS 2016; 11 (09) 1731-1741
  • 32 Fritz B, Fritz J, Fucentese SF, Pfirrmann CWA, Sutter R. Three-dimensional analysis for quantification of knee joint space width with weight-bearing CT: comparison with non-weight-bearing CT and weight-bearing radiography. Osteoarthritis Cartilage 2022; 30 (05) 671-680
  • 33 Hirschmann A, Buck FM, Herschel R, Pfirrmann CWA, Fucentese SF. Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc 2017; 25 (03) 853-862
  • 34 Draper CE, Besier TF, Fredericson M. et al. Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res 2011; 29 (03) 312-317
  • 35 Lullini G, Belvedere C, Busacca M. et al. Weight bearing versus conventional CT for the measurement of patellar alignment and stability in patients after surgical treatment for patellar recurrent dislocation. Radiol Med (Torino) 2021; 126 (06) 869-877
  • 36 Carrino JA, Al Muhit A, Zbijewski W. et al. Dedicated cone-beam CT system for extremity imaging. Radiology 2014; 270 (03) 816-824
  • 37 Newberg AH, Munn CS, Robbins AH. Complications of arthrography. Radiology 1985; 155 (03) 605-606
  • 38 Fox MG, Graham JA, Skelton BW. et al. Prospective evaluation of agreement and accuracy in the diagnosis of meniscal tears: MR arthrography a short time after injection versus CT arthrography after a moderate delay. AJR Am J Roentgenol 2016; 207 (01) 142-149
  • 39 Mutschler C, Vande Berg BC, Lecouvet FE. et al. Postoperative meniscus: assessment at dual-detector row spiral CT arthrography of the knee. Radiology 2003; 228 (03) 635-641
  • 40 Chen B, Chen L, Chen H, Yang X, Tie K, Wang H. Arthroscopic removal of loose bodies using the accessory portals in the difficult locations of the knee: a case series and technical note. J Orthop Surg Res 2018; 13 (01) 258
  • 41 Crema MD, Roemer FW, Marra MD. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 42 Martín Noguerol T, Raya JG, Wessell DE, Vilanova JC, Rossi I, Luna A. Functional MRI for evaluation of hyaline cartilage extracelullar matrix, a physiopathological-based approach. Br J Radiol 2019; 92 (1103): 20190443
  • 43 Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013; 267 (02) 503-513
  • 44 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (04) 355-368
  • 45 Guermazi A, Roemer FW, Alizai H. et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology 2015; 277 (01) 23-43
  • 46 Jungmann PM, Baum T, Bauer JS. et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?. BioMed Res Int 2014; 2014: 840170
  • 47 Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013; 267 (02) 503-513
  • 48 Kogan F, Fan AP, Monu U, Iagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthritis Cartilage 2018; 26 (06) 790-796
  • 49 Kogan F, Broski SM, Yoon D, Gold GE. Applications of PET-MRI in musculoskeletal disease. J Magn Reson Imaging 2018; 48 (01) 27-47
  • 50 Itälä A, Alihanka S, Kosola J, Kemppainen J, Ranne J, Kajander S. Tendon graft healing in multiligament reconstructed knee detected by FDG-PET/CT: a pilot study. Scand J Surg 2016; 105 (02) 133-138
  • 51 Korbin S, Salerno M, Achonu JU. et al. PET/MRI reveals ongoing metabolic activity in ACL grafts one year post-ACL reconstruction. J Exp Orthop 2020; 7 (01) 40
  • 52 Yao S, Fu BS-C, Yung PS-H. Graft healing after anterior cruciate ligament reconstruction (ACLR). Asia Pac J Sports Med Arthrosc Rehabil Technol 2021; 25: 8-15
  • 53 Garika SS, Sharma A, Razik A. et al. Comparison of F18-fluorodeoxyglucose positron emission tomography/computed tomography and dynamic contrast-enhanced magnetic resonance imaging as markers of graft viability in anterior cruciate ligament reconstruction. Am J Sports Med 2019; 47 (01) 88-95
  • 54 A Magnussen R, Binzel K, Zhang J. et al. ACL graft metabolic activity assessed by 18FDG PET-MRI. Knee 2017; 24 (04) 792-797