DO - Deutsche Zeitschrift für Osteopathie 2024; 22(02): 25-33
DOI: 10.1055/a-2220-8041
Spektrum | Anatomie

Funktionelle Anatomie der Interozeption

Dirk Luthin
Winfried Neuhuber

Interozeptive Afferenzen vermitteln dem Gehirn den Zustand des „inneren Milieus“, das geeignete Reaktionen einleitet, um die Homöostase zu sichern bzw. ihre Störung allostatisch zu korrigieren. In diesem Artikel wird u. a. die Möglichkeit diskutiert, dass Interozeptoren auch die zwischen den Brust- und Bauchorganen wirkenden Adhäsionskräfte detektieren und deren zentralnervöse Integration wesentlich zum Bewusstsein unseres „materiellen Selbst“ beiträgt. Osteopathische viszerale Techniken greifen in dieses Kräftespiel ein und beeinflussen so die Interozeption des Patienten.

Publication History

Article published online:
27 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 McConnell CP. Osteopathy. 1899 online-publishing and reprint. Pähl: Jolandos; 2006. .
  • 2 Lossing K. Visceral Manipulation. In: Ward RC. Foundations for Osteopathic Medicine. 2. Aufl. Philadelphia: Lippincott Williams & Wilkins; 2003: 1078-1093
  • 3 Still AT. Osteopathy: Research and Practice. Seattle: Eastland Press; 1992
  • 4 Hulett GD. A text book of the principles of osteopathy. Kirksville: Journal Printing; 1906
  • 5 McConnell CP, Teall CC. The practice of osteopathy. 4th ed. Kirksville: Journal Printing; 1920
  • 6 Weischenck J. Traité d’ostéopathie viscérale – Tome 1. Paris: Maloine; 1982
  • 7 Finet G, Williame C. Biométrie de la dynamique viscérale et nouvelles normalisations osteopathiques. Limoges: Roger Jollois; 1992
  • 8 Barral J-P, Mercier P. Manipulations viscérales 1. Paris: Maloine; 1983
  • 9 Newiger C. Expertenmeinungen zur viszeralen Osteopathie. Osteopath Med 2023; 24: 38-43
  • 10 Glossary of Osteopathic Terminology. In: Chila AG. Foundations of Osteopathic Medicine. 3. Aufl. Philadelphia: Lippincott Williams & Wilkins; 2011. 1106. 1109
  • 11 Glossary of Osteopathic Terminology. In: Chila AG. Foundations of Osteopathic Medicine. 3. Aufl. Philadelphia: Lippincott Williams & Wilkins; 2011. 1106. 1110
  • 12 Parravicini G, Bergna A. Biological effects of direct and indirect manipulation of the fascial system. Narrative review. Journal of bodywork and movement therapies 2017; 21: 435-445
  • 13 Pelletier R, Bourbonnais D, Higgins J. Nociception, pain, neuroplasticity and the practice of Osteopathic Manipulative Medicine. Int J Osteopath Med 2018; 27: 34-44
  • 14 McGlone F, Cerritelli F, Walker S. et al. The role of gentle touch in perinatal osteopathic manual therapy. Neuroscience & Biobehavioral Reviews 2017; 72: 1-9
  • 15 Gyer G, Michael J, Inklebarger J. et al. Spinal manipulation therapy: Is it all about the brain? A current review of the neurophysiological effects of manipulation. Journal of integrative medicine 2019; 17: 328-337
  • 16 Elkiss ML, Jerome JA. Touch – more than a basic science. J Am Osteopath Assoc 2012; 112: 514-517
  • 17 Burns L. Viscero-somatic and somato-visceral spinal reflexes. 1907. J Am Osteopath Assoc 2000; 100: 249-258
  • 18 Beal MC. Viscerosomatic reflexes: a review. J Am Osteopath Assoc 1985; 85: 786-801
  • 19 Bath M, Owens J. Physiology, Viscerosomatic Reflexes. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2023. Stand: 26.11.2023
  • 20 King HH, Jänig W, Patterson MM. The Science and Clinical Application of Manual Therapy. Edinburgh: Churchill Livingstone/Elsevier. 2011
  • 21 Pasini A, Stecco A, Stecco C. Fascial anatomy of the viscera. In: Liem T, Tozzi P, Chila A. Fascia in the osteopathic field. Edinburgh: Handspring; 2017: 171-178
  • 22 Stone C. Visceral and obstetric osteopathy. Amsterdam: Elsevier; 2007
  • 23 Stone C. Science in the art of osteopathy. Osteopathic principles and practice. Cheltenham: Stanley Thornes; 1999
  • 24 Craig AD. How do you feel? An interoceptive. moment with your neurobiological self. Princeton: Princeton University Press; 2015
  • 25 Jänig W. The Integrative Action of the Autonomic Nervous System. Neurobiology of Homeostasis. Cambridge: Cambridge University Press; 2022
  • 26 Müller LR. Lebensnerven und Lebenstriebe. Berlin: Springer; 1931
  • 27 Neuhuber WL. Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 1987; 20: 243-255
  • 28 Berthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 1992; 319: 261-276
  • 29 Berthoud HR, Patterson LM, Neumann F, Neuhuber WL. Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol 1997; 195: 183-191
  • 30 Zagorodnyuk VP, Brookes SJH. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 2000; 20: 6249-6255
  • 31 Neuhuber W, Raab M, Berthoud HR. et al. Innervation of the mammalian esophagus. Adv Anat Embryol Cell Biol 2006; 185: 1-76
  • 32 Hübsch M, Neuhuber WL, Raab M. Muscarinic acetylcholine receptors in the mouse esophagus: focus on intraganglionic laminar endings (IGLEs). Neurogastroenterol Motil 2013; 25: e560-e573
  • 33 Fox EA, Phillips RJ, Martinson FA. et al. Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol 2000; 428: 558-576
  • 34 Powley TL, Baronowsky EA, Gilbert JM. et al. Vagal afferent innervation of the lower esophageal sphincter. Auton Neurosci 2013; 177: 129-142
  • 35 Bai L, Mesgarzadeh S, Ramesh KS. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 2019; 179: 1129-1143
  • 36 Powley TL, Gilbert JM, Baronowsky EA. et al. Vagala sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease?. Neurogastroenterol Motil 2012; 24: e526-e537
  • 37 Hirakawa M, Yokoyama T, Yamamoto Y. et al Distribution and morphology of P2X3-immunoreactive subserosal afferent nerve endings in the rat gastric antrum. J Comp Neurol 2021; 529: 2014-2028
  • 38 Wang FB, Liao YH, Wang YC. Vagal nerve endings in visceral pleura and triangular ligaments of the rat lung. J Anat 2017; 230: 303-314
  • 39 Berthoud HR, Kressel M, Raybould HE. et al. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol 1995; 191: 203-212
  • 40 Williams RM, Berthoud HR, Stead RH. Vagal afferent nerve fibres contact mast cells in rat snall intestinal mucosa. Neuroimmunomodulation 1997; 4: 266-270
  • 41 Powley TL, Spaulding RA, Haglof SA. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 2011; 519: 644-660
  • 42 Kaelberer MM, Buchanan KL, Klein ME. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 2018; 361: 1219
  • 43 Zhao Q, Yu CD, Wang R. et al. A multidimensional coding architecture of the vagal interoceptive system. Nature 2022; DOI: 10.1038/s41586-022-04515-5.
  • 44 Spencer NJ, Kyloh MA, Travis K. et al. Sensory nerve endings arising from single spinal afferent neurons that innervate both circular muscle and myenteric ganglia in mouse colon: colon-brain axis. Cell Tissue Res 2020; 381: 25-34
  • 45 Grider JR, Jin JG. Distinct populations of sensory neurons mediate the peristaltic reflex elicited by muscle stretch and mucosal stimulation. J Neurosci 1994; 14: 2854-2860
  • 46 Smith-Edwards KM, Najjar SA, Edwards BS. et al. Extrinsic primary afferent neurons link visceral pain to colon motility through a spinal reflex in mice. Gastroenterology 2019; 157: 522-536
  • 47 Horling L, Bunnett NW, Messlinger K. et al. Localization of receptors for calcitonin-gene-related peptide to intraganglionic laminar endings of the mouse esophagus: peripheral interaction between vagal and spinal afferents?. Histochem Cell Biol 2014; 141: 321-335
  • 48 Blumberg H, Haupt P, Jänig W. et al. Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibres from the colon. Pflügers Arch 1983; 398: 33-40
  • 49 Song X, Chen BN, Zagorodnyuk VP. et al. Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 2009; 137: 274-284
  • 50 Ma J, Nguyen D, Madas J. et al. Spinal afferent innervation in flat-mounts of the rat stomach: anterograde tracing. Sci Rep 2023; 13: 17675
  • 51 Gammon GD, Bronk DW. The discharge of impulses from Pacinian corpuscles in the mesentery and its relation the vascular changes. Amer J Physiol 1935; 114: 77-84
  • 52 Kubik I, Szabo J. Die Innervation der Lymphgefässe im Mesenterium. Acta Morphol Acad Sci Hung 1955; 6: 25-31
  • 53 Wolfson RL, Abdelaziz A, Rankin G. et al. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 2023; 186: 3368-3385
  • 54 Matthews MR, Cuello AC. Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc Natl Acad Sci USA 1982; 79: 1668-1672
  • 55 Furness JB. The Enteric Nervous System. Oxford: Blackwell; 2006
  • 56 Mazzuoli-Weber G, Schemann M. Mechanosensitivity in the enteric nervous system. Front Cell Neurosci 2015; 9: 408
  • 57 Cervero F. Afferent activity evoked by natural stimulation of the biliary system in the ferret. Pain 1982; 13: 137-151
  • 58 Berthoud HR. Anatomy and function of sensory hepatic nerves. Anat Rec 2004; 280A: 827-835
  • 59 Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; DOI: 10.1016/j.molmet.2023.101817.
  • 60 Sann H, Cervero F. Afferent innervation of the guinea-pig’s ureter. Agents Actions 1988; 25: 243-245
  • 61 de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol 2015; 5: 327-396
  • 62 Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec 2023; DOI: 10.1002/ar.25171.
  • 63 Pintelon I, Brouns I, De Proost I. et al. Sensory receptors in the visceral pleura. Am J Respir Cell Mol Biol 2007; 36: 541-551
  • 64 Cheng Z, Powley TL, Schwaber JS. et al. Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy. J Comp Neurol 1997; 381: 1-17
  • 65 Ottaviani MM, Vallone F, Micera S. et al. Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases: state of the art and future directions. Front Cardiovasc Med 2022; 9: 866957
  • 66 Piermeier L, Akhyari P, Filler TJ. Mapping of proprioceptors in the human pericardium: topographic and gender differences and their significance for the cardiac cycle. Poster. 116th Annual Meeting of the Anatomische Gesellschaft Berlin. 2022
  • 67 Vallbo AB, Olausson H, Wessberg J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 1999; 81: 2753-2763
  • 68 Björnsdotter M, Morrison I, Olausson H. Feeling good: on the role of C fiber mediated touch in interoception. Exp Brain Res 2010; 207: 149-155
  • 69 Olausson H, Cole J, Rylander K. et al. Functional role of unmyelinated tactile afferents in human hairy skin: sympathetic response and perceptual localization. Exp Brain Res 2008; 184: 135-140
  • 70 Case LK, Liljencrantz J, McCall MV. et al. Pleasant deep pressure: expanding the social touch hypothesis. Neuroscience 2021; 464: 3-11
  • 71 Du X, Hao H, Yang Y. et al. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J Clin Invest 2017; 127: 1741-1756
  • 72 Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21: 485-498
  • 73 Altschuler SM, Bao X, Bieger D. et al. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 1989; 283: 248-268
  • 74 Driessen AK, Farrell MJ, Mazzone SB. et al. The role of the paratrigeminal nucleus in vagal afferent evoked respiratory reflexes: a neuroanatomical and functional study in guinea pigs. Front Physiol 2015; 6: 378
  • 75 Takemura M, Sugimoto T, Sakai A. Topographic representation of central terminal region of different sensory branches of the rat mandibular nerve. Exp Neurol 1987; 96: 540-557
  • 76 Ran C, Boettcher JC, Kaye JA. et al. A brainstem map for visceral sensations. Nature 2022; 609: 320-326
  • 77 Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system – emphasis on the somato-visceral interface. Auton Neurosci 2021; 236: 102887
  • 78 Morgan C, Nadelhaft I, deGroat WC. The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 1981; 201: 415-444
  • 79 Neuhuber W. The central projections of visceral primary afferent neurons of the inferior mesenteric plexus and hypogastric nerve and the location of the related sensory and preganglionic sympathetic cell bodies in the rat. Anat Embryol 1982; 164: 413-425
  • 80 Sugiura Y, Terui N, Hosoya Y. et al. Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol 1993; 332: 315-325
  • 81 Ling LJ, Honda T, Shimada Y. et al. Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol 2003; 461: 140-150
  • 82 Cervero F. Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol 1983; 337: 51-67
  • 83 Foreman RD, Qin C, Chuanchau JJ. Spinothalamic system and viscerosomatic motor reflexes: functional organization of cardiac and somatic input. In: King HH, Jänig W, Patterson MM, Hrsg. The Science and Clinical Application of Manual Therapy. Edinburgh: : Churchill Livingstone/Elsevier; 2011: 111-127
  • 84 Evrard HC. The organization of the primate insular cortex. Front Neurosci 2019; 13: 43
  • 85 Tanaka K, Kuwahara-Otani S, Maeda S. et al. Possible role of the myelinated neural network in the parietal peritoneum in rats as a mechanoreceptor. Anat Rec 2017; 300: 1662-1669
  • 86 Boyd WH. Morphology of certain sensory and motor endings in muscle spindles of the rabbit’s diaphragm. Anat Anz 1978; 143: 437-449
  • 87 Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat 2006; 208: 753-768
  • 88 Ingber DE. The architecture of life. Sci Am 1998; 278: 48-57
  • 89 Swanson RL. Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research – a review and analysis. J Am Osteopath Assoc 2013; 113: 34-52
  • 90 Cerritelli F, Chiacchiaretta P, Gambi F. et al. Effect of Continuous Touch on Brain Functional Connectivity Is Modified by the Operator's Tactile Attention. Front Hum Neurosci 2017; 11: 368
  • 91 Leboyer F. Sanfte Hände. 24. Aufl. München: Kösel; 2007
  • 92 Ponzo V, Cinnera AM, Mommo F. et al. Osteopathic manipulative therapy potentiates motor cortical plasticity. J Am Osteopath Assoc 2018; 118: 396-402
  • 93 Tamburella F, Piras F, Piras F. et al. Cerebral perfusion changes after osteopathic manipulative treatment: a randomized manual placebo-controlled trial. Front Physiol 2019; 10: 403
  • 94 D’Alessandro G, Cerritelli F, Cortelli P. Sensitization and interoception as key neurological concepts in osteopathy and other manual medicines. Front Neurosci 2016; 10: 100
  • 95 Cerritelli F, Chiacchiaretta P, Gambi F. et al. Osteopathy modulates brain-heart interaction in chronic pain patients: an ASL study. Sci Rep 2021; 11: 4556
  • 96 Baroni F, Ruffini N, D'Alessandro G. et al. The role of touch in osteopathic practice: A narrative review and integrative hypothesis. Complement Ther Clin Pract 2021; 42: 101277
  • 97 Beissner F, Meissner K, Bar KJ. et al. The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013; 33: 10503-10511
  • 98 Damasio A, Carvalho GB. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci 2013; 14: 143-152