Hamostaseologie 2024; 44(01): 059-073
DOI: 10.1055/a-2223-9484
Review Article

100 Years of Thrombotic Thrombocytopenic Purpura: A Story of Death and Life

Bernhard Lämmle
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
2   Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
,
Karen Vanhoorelbeke
3   Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
,
Johanna A. Kremer Hovinga
2   Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
,
Paul Knöbl
4   Department of Medicine 1, Division for Hematology and Hemostasis, Medical University of Vienna, Vienna, Austria
› Author Affiliations
Funding None.

Abstract

One hundred years ago, in 1924, the first description of a patient with a disease, now known as thrombotic thrombocytopenic purpura (TTP) was published by Dr. Eli Moschcowitz. In honor of this report, this article, written by distinguished specialists in TTP, reviews the increase in scientific knowledge on this disease during the last 100 years. It covers the scientific progress from plasma therapy, the first beneficial treatment for TTP, to the elucidation of the pathophysiology, the discovery of ADAMTS13, the development of assays and targeted therapies up to the modern treatment concepts, that improved the outcome of TTP from an incurable disease to a well understood and treatable disorder.



Publication History

Received: 06 November 2023

Accepted: 06 December 2023

Article published online:
28 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc 1924; 24: 21-24
  • 2 Singer K, Bornstein FP, Wile SA. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood 1947; 2 (06) 542-554
  • 3 Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine (Baltimore) 1966; 45 (02) 139-160
  • 4 Upshaw Jr JD. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med 1978; 298 (24) 1350-1352
  • 5 Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood 1960; 16: 943-957
  • 6 Moake JL, Chow TW. Thrombotic thrombocytopenic purpura: understanding a disease no longer rare. Am J Med Sci 1998; 316 (02) 105-119
  • 7 Remuzzi G, Misiani R, Marchesi D. et al. Haemolytic-uraemic syndrome: deficiency of plasma factor(s) regulating prostacyclin activity?. Lancet 1978; 2 (8095): 871-872
  • 8 Raife TJ, Atkinson B, Aster RH, McFarland JG, Gottschall JL. Minimal evidence of platelet and endothelial cell reactive antibodies in thrombotic thrombocytopenic purpura. Am J Hematol 1999; 62 (02) 82-87
  • 9 Moake JL, Rudy CK, Troll JH. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982; 307 (23) 1432-1435
  • 10 Furlan M, Robles BLB. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87 (10) 4223-4234
  • 11 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87 (10) DOI: 10.1182/blood.v87.10.4235.bloodjournal87104235.
  • 12 Dent JA, Berkowitz SD, Ware J, Kasper CK, Ruggeri ZM. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci U S A 1990; 87 (16) 6306-6310
  • 13 Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lämmle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood 1997; 89 (09) 3097-3103
  • 14 Furlan M, Robles R, Solenthaler M, Lämmle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood 1998; 91 (08) 2839-2846
  • 15 Furlan M, Robles R, Galbusera M. et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 1998; 339 (22) 1578-1584
  • 16 Tsai HM, Lian ECY. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594
  • 17 Gasser C, Gautier E, Steck A, Siebenmann RE, Oechslin R. Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia. Schweiz Med Wochenschr 1955; 85 (38–39): 905-909
  • 18 George JN. How I treat patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Blood 2000; 96 (04) 1223-1229
  • 19 Moore JC, Hayward CPM, Warkentin TE, Kelton JG. Decreased von Willebrand factor protease activity associated with thrombocytopenic disorders. Blood 2001; 98 (06) 1842-1846
  • 20 Mannucci PM, Canciani MT, Forza I, Lussana F, Lattuada A, Rossi E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 2001; 98 (09) 2730-2735
  • 21 Bianchi V, Robles R, Alberio L, Furlan M, Lämmle B. Von Willebrand factor-cleaving protease (ADAMTS13) in thrombocytopenic disorders: a severely deficient activity is specific for thrombotic thrombocytopenic purpura. Blood 2002; 100 (02) 710-713
  • 22 Gerritsen HE, Robles R, Lämmle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98 (06) 1654-1661
  • 23 Soejima K, Mimura N, Hirashima M. et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease?. J Biochem 2001; 130 (04) 475-480
  • 24 Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001; 98 (06) 1662-1666
  • 25 Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 2001; 276 (44) 41059-41063
  • 26 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413 (6855): 488-494
  • 27 Plaimauer B, Zimmermann K, Völkel D. et al. Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood 2002; 100 (10) 3626-3632
  • 28 Antoine G, Zimmermann K, Plaimauer B. et al. ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant human ADAMTS13. Br J Haematol 2003; 120 (05) 821-824
  • 29 Furlan M. Proteolytic cleavage of von Willebrand factor by ADAMTS-13 prevents uninvited clumping of blood platelets. J Thromb Haemost 2004; 2 (09) 1505-1509
  • 30 Moake JL. Defective processing of unusually large von Willebrand factor multimers and thrombotic thrombocytopenic purpura. J Thromb Haemost 2004; 2 (09) 1515-1521
  • 31 Tsai HM. A journey from sickle cell anemia to ADAMTS13. J Thromb Haemost 2004; 2 (09) 1510-1514
  • 32 Rubinstein MA, Kagan BM, MacGillviray MH, Merliss R, Sacks H. Unusual remission in a case of thrombotic thrombocytopenic purpura syndrome following fresh blood exchange transfusions. Ann Intern Med 1959; 51: 1409-1419
  • 33 Shepard KV, Bukowski RM. The treatment of thrombotic thrombocytopenic purpura with exchange transfusions, plasma infusions, and plasma exchange. Semin Hematol 1987; 24 (03) 178-193
  • 34 Rock GA, Shumak KH, Buskard NA. et al; Canadian Apheresis Study Group. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N Engl J Med 1991; 325 (06) 393-397
  • 35 Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med 1991; 325 (06) 398-403
  • 36 Kappers-Klunne MC, Wijermans P, Fijnheer R. et al. Splenectomy for the treatment of thrombotic thrombocytopenic purpura. Br J Haematol 2005; 130 (05) 768-776
  • 37 Veltman GAM, Brand A, Leeksma OC, ten Bosch GJA, van Krieken JHJM, Briët E. The role of splenectomy in the treatment of relapsing thrombotic thrombocytopenic purpura. Ann Hematol 1995; 70 (05) 231-236
  • 38 Scully M, Knöbl P, Kentouche K. et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood 2017; 130 (19) 2055-2063
  • 39 Taylor A, Vendramin C, Oosterholt S, Della Pasqua O, Scully M. Pharmacokinetics of plasma infusion in congenital thrombotic thrombocytopenic purpura. J Thromb Haemost 2019; 17 (01) 88-98
  • 40 Furlan M, Robles R, Morselli B, Sandoz P, Lämmle B. Recovery and half-life of von Willebrand factor-cleaving protease after plasma therapy in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 1999; 81 (01) 8-13
  • 41 Sadler JE. von Willebrand factor assembly and secretion. J Thromb Haemost 2009; 7 (Suppl. 01) 24-27
  • 42 Lenting PJ, Christophe OD, Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 2015; 125 (13) 2019-2028
  • 43 Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 1994; 83 (08) 2171-2179
  • 44 De Ceunynck K, De Meyer SF, Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood 2013; 121 (02) 270-277
  • 45 Petri A, Kim HJ, Xu Y. et al. Crystal structure and substrate-induced activation of ADAMTS13. Nat Commun 2019; 10 (01) 3781
  • 46 Schelpe AS, Petri A, Roose E. et al. Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function. Blood Adv 2020; 4 (06) 1072-1080
  • 47 Muia J, Zhu J, Gupta G. et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A 2014; 111 (52) 18584-18589
  • 48 Crawley JTB, de Groot R, Xiang Y, Luken BM, Lane DA. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118 (12) 3212-3221
  • 49 Kremer Hovinga JA, Coppo P, Lämmle B, Moake JL, Miyata T, Vanhoorelbeke K. Thrombotic thrombocytopenic purpura. Nat Rev Dis Primers 2017; 3: 17020
  • 50 Sadler JE. Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017; 130 (10) 1181-1188
  • 51 Sukumar S, Lämmle B, Cataland SR. Thrombotic thrombocytopenic purpura: pathophysiology, diagnosis, and management. J Clin Med 2021; 10 (03) 1-24
  • 52 Roose E, Schelpe AS, Joly BS. et al. An open conformation of ADAMTS-13 is a hallmark of acute acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2018; 16 (02) 378-388
  • 53 Roose E, Schelpe AS, Tellier E. et al. Open ADAMTS13, induced by antibodies, is a biomarker for subclinical immune-mediated thrombotic thrombocytopenic purpura. Blood 2020; 136 (03) 353-361
  • 54 De Waele L, Curie A, Kangro K. et al. Anti-cysteine/spacer antibodies that open ADAMTS13 are a common feature in iTTP. Blood Adv 2021; 5 (21) 4480-4484
  • 55 Jestin M, Benhamou Y, Schelpe AS. et al; French Thrombotic Microangiopathies Reference Center. Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood 2018; 132 (20) 2143-2153
  • 56 Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol 2005; 129 (01) 93-100
  • 57 Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion 2006; 46 (08) 1444-1452
  • 58 Moore GW, Vetr H, Binder NB. ADAMTS13 antibody and inhibitor assays. Methods Mol Biol 2023; 2663: 549-565
  • 59 Vendramin C, Thomas M, Westwood JP, Scully M. Bethesda assay for detecting inhibitory anti-ADAMTS13 antibodies in immune-mediated thrombotic thrombocytopenic purpura. TH Open 2018; 2 (03) e329-e333
  • 60 Favaloro EJ, Chapman K, Mohammed S, Vong R, Pasalic L. Identification of ADAMTS13 inhibitors in acquired TTP. Methods Mol Biol 2023; 2663: 505-521
  • 61 Kremer Hovinga JA, George JN. Hereditary thrombotic thrombocytopenic purpura. N Engl J Med 2019; 381 (17) 1653-1662
  • 62 Fujimura Y, Matsumoto M, Isonishi A. et al. Natural history of Upshaw-Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost 2011; 9 (Suppl. 01) 283-301
  • 63 Mariotte E, Azoulay E, Galicier L. et al; French Reference Center for Thrombotic Microangiopathies. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy. Lancet Haematol 2016; 3 (05) e237-e245
  • 64 von Krogh AS, Quist-Paulsen P, Waage A. et al. High prevalence of hereditary thrombotic thrombocytopenic purpura in central Norway: from clinical observation to evidence. J Thromb Haemost 2016; 14 (01) 73-82
  • 65 Pikovsky O, Arafat M, Ovadia H. et al. Congenital thrombotic thrombocytopenic purpura in a large cohort of patients carrying a novel mutation in ADAMTS13 gene. Thromb Res 2020; 185: 167-170
  • 66 Kremer Hovinga JA, Heeb SR, Skowronska M, Schaller M. Pathophysiology of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. J Thromb Haemost 2018; 16 (04) 618-629
  • 67 van Dorland HA, Taleghani MM, Sakai K. et al; Hereditary TTP Registry. The International Hereditary Thrombotic Thrombocytopenic Purpura Registry: key findings at enrollment until 2017. Haematologica 2019; 104 (10) 2107-2115
  • 68 Lotta LA, Garagiola I, Palla R, Cairo A, Peyvandi F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum Mutat 2010; 31 (01) 11-19
  • 69 Rurali E, Banterla F, Donadelli R. et al. ADAMTS13 secretion and residual activity among patients with congenital thrombotic thrombocytopenic purpura with and without renal impairment. Clin J Am Soc Nephrol 2015; 10 (11) 2002-2012
  • 70 Moatti-Cohen M, Garrec C, Wolf M. et al; French Reference Center for Thrombotic Microangiopathies. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood 2012; 119 (24) 5888-5897
  • 71 Scully M, Thomas M, Underwood M. et al; collaborators of the UK TTP Registry. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood 2014; 124 (02) 211-219
  • 72 Joly BS, Boisseau P, Roose E. et al; French Reference Center for Thrombotic Microangiopathies. ADAMTS13 gene mutations influence ADAMTS13 conformation and disease age-onset in the French cohort of Upshaw-Schulman Syndrome. Thromb Haemost 2018; 118 (11) 1902-1917
  • 73 Joly BS, Stepanian A, Leblanc T. et al; French Reference Center for Thrombotic Microangiopathies. Child-onset and adolescent-onset acquired thrombotic thrombocytopenic purpura with severe ADAMTS13 deficiency: a cohort study of the French national registry for thrombotic microangiopathy. Lancet Haematol 2016; 3 (11) e537-e546
  • 74 Tarasco E, Bütikofer L, Friedman KD. et al. Annual incidence and severity of acute episodes in hereditary thrombotic thrombocytopenic purpura. Blood 2021; 137 (25) 3563-3575
  • 75 Borogovac A, Reese JA, Gupta S, George JN. Morbidities and mortality in patients with hereditary thrombotic thrombocytopenic purpura. Blood Adv 2022; 6 (03) 750-759
  • 76 Fujimura Y, Matsumoto M, Kokame K. et al. Pregnancy-induced thrombocytopenia and TTP, and the risk of fetal death, in Upshaw-Schulman syndrome: a series of 15 pregnancies in 9 genotyped patients. Br J Haematol 2009; 144 (05) 742-754
  • 77 Miodownik S, Pikovsky O, Erez O, Kezerle Y, Lavon O, Rabinovich A. Unfolding the pathophysiology of congenital thrombotic thrombocytopenic purpura in pregnancy: lessons from a cluster of familial cases. Am J Obstet Gynecol 2021; 225 (02) 177.e1-177.e15
  • 78 Mansouri Taleghani M, von Krogh AS, Fujimura Y. et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie 2013; 33 (02) 138-143
  • 79 Tarasco E, von Krogh AS, Hrdlickova R. et al. Hereditary thrombotic thrombocytopenic purpura and COVID-19: Impacts of vaccination and infection in this rare disease. Res Pract Thromb Haemost 2022; 6 (07) e12814
  • 80 Alwan F, Vendramin C, Liesner R. et al. Characterization and treatment of congenital thrombotic thrombocytopenic purpura. Blood 2019; 133 (15) 1644-1651
  • 81 Sakai K, Fujimura Y, Nagata Y. et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18 (11) 2929-2941
  • 82 Sakai K, Fujimura Y, Miyata T, Isonishi A, Kokame K, Matsumoto M. Current prophylactic plasma infusion protocols do not adequately prevent long-term cumulative organ damage in the Japanese congenital thrombotic thrombocytopenic purpura cohort. Br J Haematol 2021; 194 (02) 444-452
  • 83 von Krogh AS, Kremer Hovinga JA, Tjønnfjord GE. et al. The impact of congenital thrombotic thrombocytopenic purpura on pregnancy complications. Thromb Haemost 2014; 111 (06) 1180-1183
  • 84 Asmis LM, Serra A, Krafft A. et al. Recombinant ADAMTS13 for hereditary thrombotic thrombocytopenic purpura. N Engl J Med 2022; 387 (25) 2356-2361
  • 85 Beltrami-Moreira M, DeSancho MT. Delayed diagnosis of congenital thrombotic thrombocytopenic purpura in a patient with recurrent strokes. J Thromb Thrombolysis 2022; 53 (03) 734-738
  • 86 Stubbs MJ, Kendall G, Scully M. Recombinant ADAMTS13 in severe neonatal thrombotic thrombocytopenic purpura. N Engl J Med 2022; 387 (25) 2391-2392
  • 87 Raval JS, Padmanabhan A, Kremer Hovinga JA, Kiss JE. Development of a clinically significant ADAMTS13 inhibitor in a patient with hereditary thrombotic thrombocytopenic purpura. Am J Hematol 2015; 90 (01) E22
  • 88 Azoulay E, Bauer PR, Mariotte E. et al; Nine-i Investigators. Expert statement on the ICU management of patients with thrombotic thrombocytopenic purpura. Intensive Care Med 2019; 45 (11) 1518-1539
  • 89 Brunskill SJ, Tusold A, Benjamin S, Stanworth SJ, Murphy MF. A systematic review of randomized controlled trials for plasma exchange in the treatment of thrombotic thrombocytopenic purpura. Transfus Med 2007; 17 (01) 17-35
  • 90 Rock G, Shumak KH, Sutton DMC, Buskard NA, Nair RC. Members of the Canadian Apheresis Group. Cryosupernatant as replacement fluid for plasma exchange in thrombotic thrombocytopenic purpura. Br J Haematol 1996; 94 (02) 383-386
  • 91 del Río-Garma J, Alvarez-Larrán A, Martínez C. et al. Methylene blue-photoinactivated plasma versus quarantine fresh frozen plasma in thrombotic thrombocytopenic purpura: a multicentric, prospective cohort study. Br J Haematol 2008; 143 (01) 39-45
  • 92 Mintz PD, Neff A, MacKenzie M. et al. A randomized, controlled Phase III trial of therapeutic plasma exchange with fresh-frozen plasma (FFP) prepared with amotosalen and ultraviolet A light compared to untreated FFP in thrombotic thrombocytopenic purpura. Transfusion 2006; 46 (10) 1693-1704
  • 93 Knöbl PN. Treatment of thrombotic microangiopathy with a focus on new treatment options. Hamostaseologie 2013; 33 (02) 149-159
  • 94 Zheng XL, Vesely SK, Cataland SR. et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18 (10) 2496-2502
  • 95 Scully M, Rayment R, Clark A. et al; BSH Committee. A British Society for Haematology Guideline: diagnosis and management of thrombotic thrombocytopenic purpura and thrombotic microangiopathies. Br J Haematol 2023; 203 (04) 546-563
  • 96 Froissart A, Buffet M, Veyradier A. et al; French Thrombotic Microangiopathies Reference Center, Experience of the French Thrombotic Microangiopathies Reference Center. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Crit Care Med 2012; 40 (01) 104-111
  • 97 Scully M, McDonald V, Cavenagh J. et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood 2011; 118 (07) 1746-1753
  • 98 Völker LA, Kaufeld J, Miesbach W. et al. Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood Adv 2020; 4 (13) 3085-3092
  • 99 Van de Louw A, Mariotte E, Darmon M, Cohrs A, Leslie D, Azoulay E. Outcomes in 1096 patients with severe thrombotic thrombocytopenic purpura before the caplacizumab era. PLoS One 2021; 16 (08) e0256024
  • 100 L'Acqua C, Hod E. New perspectives on the thrombotic complications of haemolysis. Br J Haematol 2015; 168 (02) 175-185
  • 101 Ullman AJ, Marsh N, Mihala G, Cooke M, Rickard CM. Complications of central venous access devices: a systematic review. Pediatrics 2015; 136 (05) e1331-e1344
  • 102 Buckenmayer A, Möller B, Ostermaier C, Hoyer J, Haas CS. Tunneled central venous catheters for hemodialysis-unfairly condemned? Catheter-related complications in a university hospital setting. J Vasc Access 2023; 11 297298221150479
  • 103 Rizvi MA, Vesely SK, George JN. et al. Complications of plasma exchange in 71 consecutive patients treated for clinically suspected thrombotic thrombocytopenic purpura-hemolytic-uremic syndrome. Transfusion 2000; 40 (08) 896-901
  • 104 Basic-Jukic N, Kes P, Glavas-Boras S, Brunetta B, Bubic-Filipi L, Puretic Z. Complications of therapeutic plasma exchange: experience with 4857 treatments. Ther Apher Dial 2005; 9 (05) 391-395
  • 105 Shemin D, Briggs D, Greenan M. Complications of therapeutic plasma exchange: a prospective study of 1,727 procedures. J Clin Apher 2007; 22 (05) 270-276
  • 106 Völker LA, Kaufeld J, Balduin G. et al; German TTP-Study Group. Impact of first-line use of caplacizumab on treatment outcomes in immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21 (03) 559-572
  • 107 Chen J, Reheman A, Gushiken FC. et al. N-acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice. J Clin Invest 2011; 121 (02) 593-603
  • 108 Tersteeg C, Roodt J, Van Rensburg WJ. et al. N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura. Blood 2017; 129 (08) 1030-1038
  • 109 Español I, Leal JD, Blanquer M. et al. N-acetylcistein for thrombotic thrombocytopenic purpura: an observational case series study. Ann Hematol 2023; 102 (08) 2069-2075
  • 110 Rottenstreich A, Hochberg-Klein S, Rund D, Kalish Y. The role of N-acetylcysteine in the treatment of thrombotic thrombocytopenic purpura. J Thromb Thrombolysis 2016; 41 (04) 678-683
  • 111 Stubbs MJ, Thomas M, Vendramin C. et al. Administration of immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) for persistent anti-ADAMTS13 antibodies in patients with thrombotic thrombocytopenic purpura in clinical remission. Br J Haematol 2019; 186 (01) 137-140
  • 112 Jilma-Stohlawetz P, Gilbert JC, Gorczyca ME, Knöbl P, Jilma B. A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb Haemost 2011; 106 (03) 539-547
  • 113 Jilma B, Paulinska P, Jilma-Stohlawetz P, Gilbert JC, Hutabarat R, Knöbl P. A randomised pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb Haemost 2010; 104 (03) 563-570
  • 114 Knöbl P, Jilma B, Gilbert JC, Hutabarat RM, Wagner PG, Jilma-Stohlawetz P. Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion 2009; 49 (10) 2181-2185
  • 115 Jilma B, Jilma P, Paulinska Md P. et al. Proof of concept for the anti von willebrand factor aptamer in patients with relapsing thrombotic thrombocytopenic purpura (TTP). Blood 2008; 112 (11) 798-799
  • 116 Cataland SR, Peyvandi F, Mannucci PM. et al. Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am J Hematol 2012; 87 (04) 430-432
  • 117 Som S, Deford CC, Kaiser ML. et al. Decreasing frequency of plasma exchange complications in patients treated for thrombotic thrombocytopenic purpura-hemolytic uremic syndrome, 1996 to 2011. Transfusion 2012; 52 (12) 2525-2532 , quiz 2524
  • 118 Salles G, Barrett M, Foà R. et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther 2017; 34 (10) 2232-2273
  • 119 Ireland R. Thrombotic microangiopathy: rituximab in severe autoimmune TTP. Nat Rev Nephrol 2012; 8 (03) 131
  • 120 Galbusera M, Bresin E, Noris M. et al. Rituximab prevents recurrence of thrombotic thrombocytopenic purpura: a case report. Blood 2005; 106 (03) 925-928
  • 121 Chemnitz J, Draube A, Scheid C. et al. Successful treatment of severe thrombotic thrombocytopenic purpura with the monoclonal antibody rituximab. Am J Hematol 2002; 71 (02) 105-108
  • 122 Falter T, Herold S, Weyer-Elberich V. et al Relapse Rate in Survivors of Acute Autoimmune Thrombotic Thrombocytopenic Purpura Treated with or without Rituximab. Thromb Haemost 2018; 118 (10) 1743-1751
  • 123 Uhl L, Kiss JE, Malynn E, Terrell DR, Vesely SK, George JN. Rituximab for thrombotic thrombocytopenic purpura: lessons from the STAR trial. Transfusion 2017; 57 (10) 2532-2538
  • 124 Sun L, Mack J, Li A. et al. Predictors of relapse and efficacy of rituximab in immune thrombotic thrombocytopenic purpura. Blood Adv 2019; 3 (09) 1512-1518
  • 125 Westwood JP, Webster H, McGuckin S, McDonald V, Machin SJ, Scully M. Rituximab for thrombotic thrombocytopenic purpura: benefit of early administration during acute episodes and use of prophylaxis to prevent relapse. J Thromb Haemost 2013; 11 (03) 481-490
  • 126 Fakhouri F, Vernant JP, Veyradier A. et al. Efficiency of curative and prophylactic treatment with rituximab in ADAMTS13-deficient thrombotic thrombocytopenic purpura: a study of 11 cases. Blood 2005; 106 (06) 1932-1937
  • 127 Hie M, Gay J, Galicier L. et al; French Thrombotic Microangiopathies Reference Centre. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura. Blood 2014; 124 (02) 204-210
  • 128 Owattanapanich W, Wongprasert C, Rotchanapanya W, Owattanapanich N, Ruchutrakool T. Comparison of the long-term remission of rituximab and conventional treatment for acquired thrombotic thrombocytopenic purpura: a systematic review and meta-analysis. Clin Appl Thromb Hemost 2019; 25: 10 76029618825309
  • 129 Scully M, Hunt BJ, Benjamin S. et al; British Committee for Standards in Haematology. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol 2012; 158 (03) 323-335
  • 130 Veyradier A, Girma JP. Assays of ADAMTS-13 activity. Semin Hematol 2004; 41 (01) 41-47
  • 131 Moore GW, Meijer D, Griffiths M. et al. A multi-center evaluation of TECHNOSCREEN® ADAMTS-13 activity assay as a screening tool for detecting deficiency of ADAMTS-13. J Thromb Haemost 2020; 18 (07) 1686-1694
  • 132 Valsecchi C, Mirabet M, Mancini I. et al. Evaluation of a new, rapid, fully automated assay for the measurement of ADAMTS13 activity. Thromb Haemost 2019; 119 (11) 1767-1772
  • 133 Singh D, Subhan MO, de Groot R. et al. ADAMTS13 activity testing: evaluation of commercial platforms for diagnosis and monitoring of thrombotic thrombocytopenic purpura. Res Pract Thromb Haemost 2023; 7 (02) 100108
  • 134 Stratmann J, Ward JN, Miesbach W. Evaluation of a rapid turn-over, fully-automated ADAMTS13 activity assay: a method comparison study. J Thromb Thrombolysis 2020; 50 (03) 628-631
  • 135 Bartunek J, Barbato E, Heyndrickx G, Vanderheyden M, Wijns W, Holz JB. Novel antiplatelet agents: ALX-0081, a nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res 2013; 6 (03) 355-363
  • 136 Peyvandi F, Scully M, Kremer Hovinga JA. et al; TITAN Investigators. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374 (06) 511-522
  • 137 Peyvandi F, Scully M, Kremer Hovinga JA. et al. Caplacizumab reduces the frequency of major thromboembolic events, exacerbations and death in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2017; 15 (07) 1448-1452
  • 138 Scully M, Cataland SR, Peyvandi F. et al; HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380 (04) 335-346
  • 139 Knoebl P, Cataland S, Peyvandi F. et al. Efficacy and safety of open-label caplacizumab in patients with exacerbations of acquired thrombotic thrombocytopenic purpura in the HERCULES study. J Thromb Haemost 2020; 18 (02) 479-484
  • 140 Izquierdo CP, Mingot-Castellano ME, Fuentes AEK. et al. Real-world effectiveness of caplacizumab vs the standard of care in immune thrombotic thrombocytopenic purpura. Blood Adv 2022; 6 (24) 6219-6227
  • 141 Dutt T, Shaw RJ, Stubbs M. et al. Real-world experience with caplacizumab in the management of acute TTP. Blood 2021; 137 (13) 1731-1740
  • 142 Coppo P, Bubenheim M, Azoulay E. et al. A regimen with caplacizumab, immunosuppression, and plasma exchange prevents unfavorable outcomes in immune-mediated TTP. Blood 2021; 137 (06) 733-742
  • 143 Picod A, Veyradier A, Coppo P. Should all patients with immune-mediated thrombotic thrombocytopenic purpura receive caplacizumab?. J Thromb Haemost 2021; 19 (01) 58-67
  • 144 Sukumar S, George JN, Cataland SR. Shared decision making, thrombotic thrombocytopenic purpura, and caplacizumab. Am J Hematol 2020; 95 (04) E76-E77
  • 145 Zheng L, Zheng XL. How should caplacizumab be used for treatment of immune thrombotic thrombocytopenic purpura?. Ann Blood 2023; 8: 11
  • 146 Völker LA, Kaufeld J, Miesbach W. et al. ADAMTS13 and VWF activities guide individualized caplacizumab treatment in patients with aTTP. Blood Adv 2020; 4 (13) 3093-3101
  • 147 Kühne L, Kaufeld J, Völker LA. et al. Alternate-day dosing of caplacizumab for immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2022; 20 (04) 951-960
  • 148 Völker LA, Brinkkoetter PT, Knöbl PN. et al. Treatment of acquired thrombotic thrombocytopenic purpura without plasma exchange in selected patients under caplacizumab. J Thromb Haemost 2020; 18 (11) 3061-3066
  • 149 Völker LA, Brinkkoetter PT, Cataland SR, Masias C. Five years of caplacizumab: lessons learned and remaining controversies in immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21 (10) 2718-2725
  • 150 Eller K, Knoebl P, Bakkaloglu SA. et al. European Renal Best Practice endorsement of guidelines for diagnosis and therapy of thrombotic thrombocytopaenic purpura published by the International Society on Thrombosis and Haemostasis. Nephrol Dial Transplant 2022; 37 (07) 1229-1234
  • 151 Cuker A, Cataland SR, Coppo P. et al. Redefining outcomes in immune TTP: an international working group consensus report. Blood 2021; 137 (14) 1855-1861
  • 152 Chander DP, Loch MM, Cataland SR, George JN. Caplacizumab therapy without plasma exchange for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 381 (01) 92-94
  • 153 Kühne L, Knöbl P, Eller K. et al. Management of immune thrombotic thrombocytopenic purpura without therapeutic plasma exchange. . Available at SSRN: http://dx.doi.org/10.2139/ssrn.4649511
  • 154 Knöbl P. Thrombotic thrombocytopenic purpura. Mag Eur Med Oncol 2018; 11 (03) 220-226
  • 155 Kopić A, Benamara K, Piskernik C. et al. Preclinical assessment of a new recombinant ADAMTS-13 drug product (BAX930) for the treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2016; 14 (07) 1410-1419
  • 156 Scully M, Windyga J, Mellgard B, Ortel TL, Li H, Ayash-Rashkovsky M, Cataland SWL. Phase 3 prospective, randomized, controlled, open-label, multicenter, crossover study of recombinant ADAMTS13 in patients with congenital thrombotic thrombocytopenic purpura. . ISTH Abstract. 2023
  • 157 Jian C, Xiao J, Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood 2012; 119 (16) 3836-3843
  • 158 van Moorsel MVA, de Maat S, Vercruysse K. et al. VWF-targeted thrombolysis to overcome rh-tPA resistance in experimental murine ischemic stroke models. Blood 2022; 140 (26) 2844-2848
  • 159 de Maat S, Clark CC, Barendrecht AD. et al. Microlyse: a thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood 2022; 139 (04) 597-607
  • 160 Plaimauer B, Kremer Hovinga JA, Juno C. et al. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost 2011; 9 (05) 936-944
  • 161 Scully M, Baptista J, Bhattacharya I. et al S305: Phase 2 randomized, placebo- controlled, double-blind, multicenter study of recombinant ADAMTS13 in patients with immune-mediated thrombotic thrombocytopenic purpura. Hemasphere 2023; 7 (S3): e8651306