Subscribe to RSS
DOI: 10.1055/a-2230-2455
Artificial intelligence for ultrasound microflow imaging in breast cancer diagnosis
Künstliche Intelligenz für das Ultraschall-Microflow-Imaging in der BrustkrebsdiagnoseAbstract
Purpose To develop and evaluate artificial intelligence (AI) algorithms for ultrasound (US) microflow imaging (MFI) in breast cancer diagnosis.
Materials and Methods We retrospectively collected a dataset consisting of 516 breast lesions (364 benign and 152 malignant) in 471 women who underwent B-mode US and MFI. The internal dataset was split into training (n = 410) and test datasets (n = 106) for developing AI algorithms from deep convolutional neural networks from MFI. AI algorithms were trained to provide malignancy risk (0–100%). The developed AI algorithms were further validated with an independent external dataset of 264 lesions (229 benign and 35 malignant). The diagnostic performance of B-mode US, AI algorithms, or their combinations was evaluated by calculating the area under the receiver operating characteristic curve (AUROC).
Results The AUROC of the developed three AI algorithms (0.955–0.966) was higher than that of B-mode US (0.842, P < 0.0001). The AUROC of the AI algorithms on the external validation dataset (0.892–0.920) was similar to that of the test dataset. Among the AI algorithms, no significant difference was found in all performance metrics combined with or without B-mode US. Combined B-mode US and AI algorithms had a higher AUROC (0.963–0.972) than that of B-mode US (P < 0.0001). Combining B-mode US and AI algorithms significantly decreased the false-positive rate of BI-RADS category 4A lesions from 87% to 13% (P < 0.0001).
Conclusion AI-based MFI diagnosed breast cancers with better performance than B-mode US, eliminating 74% of false-positive diagnoses in BI-RADS category 4A lesions.
Zusammenfassung
Ziel Entwicklung und Bewertung von Algorithmen der künstlichen Intelligenz (KI) für das Ultraschall-Microflow-Imaging (MFI) in der Brustkrebsdiagnose.
Material und Methoden Wir sammelten retrospektiv einen Datensatz, der aus 516 Brustläsionen (364 benigne und 152 maligne) von 471 Frauen bestand, die sich dem B-Mode-US und dem MFI unterzogen. Der interne Datensatz wurde in einen Trainings- (n=410) und einen Testdatensatz (n=106) aufgeteilt, um KI-Algorithmen auf der Grundlage tiefer Convolutional-Neural-Networks aus MFI zu entwickeln. Die KI-Algorithmen wurden trainiert, um das Malignitätsrisiko (0–100%) zu ermitteln. Die entwickelten KI-Algorithmen wurden mit einem unabhängigen externen Datensatz von 264 Läsionen (229 benignen und 35 malignen) weiter validiert. Die diagnostische Leistung von B-Mode-US, KI-Algorithmen oder deren Kombinationen wurde durch Berechnung der Fläche unter der Receiver-Operating-Characteristic-Curve (AUROC) bewertet.
Ergebnisse Die AUROC der 3 entwickelten KI-Algorithmen (0,955–0,966) war höher als die des B-Mode-US (0,842; p<0,0001). Die AUROC der KI-Algorithmen im externen Validierungsdatensatz (0,892–0,920) war ähnlich wie die des Testdatensatzes. Unter den KI-Algorithmen wurde kein signifikanter Unterschied in allen Leistungsmetriken in Kombination mit oder ohne B-Mode-US gefunden. Die Kombination aus B-Mode-US und KI-Algorithmen wies einen höheren AUROC-Wert (0,963–0,972) auf als der B-Mode-US (p<0,0001). Durch die Kombination von B-Mode-US und KI-Algorithmen konnte die falsch-positive Rate von Läsionen der BI-RADS-Kategorie 4A signifikant von 87% auf 13% gesenkt werden (p<0,0001).
Schlussfolgerung Das KI-basierte MFI diagnostizierte Brustkrebs mit besserer Leistung als der B-Mode-US und eliminierte 74% der falsch-positiven Diagnosen bei Läsionen der BI-RADS-Kategorie 4A.
Keywords
artificial intelligence - deep learning - microvascular blood flow - breast cancer - ultrasonography, DopplerPublication History
Received: 15 June 2023
Accepted after revision: 06 December 2023
Article published online:
09 April 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Crystal P, Strano SD, Shcharynski S. et al. Using sonography to screen women with mammographically dense breasts. AJR Am J Roentgenol 2003; 181: 177-182 DOI: 10.2214/ajr.181.1.1810177.
- 2 Berg WA, Zhang Z, Lehrer D. et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. Jama 2012; 307: 1394-1404 DOI: 10.1001/jama.2012.388. (PMID: 22474203)
- 3 Folkman J. Angiogenesis and breast cancer. J Clin Oncol 1994; 12: 441-443 DOI: 10.1200/jco.1994.12.3.441. (PMID: 7509850)
- 4 Uzzan B, Nicolas P, Cucherat M. et al. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 2004; 64: 2941-2955 DOI: 10.1158/0008-5472.can-03-1957.
- 5 Park AY, Seo BK, Han MR. Breast Ultrasound Microvascular Imaging and Radiogenomics. Korean J Radiol 2021; 22: 677-687 DOI: 10.3348/kjr.2020.1166. (PMID: 33569931)
- 6 Bartolotta TV, Orlando AAM, Schillaci MI. et al. Ultrasonographic Detection of Vascularity of Focal Breast Lesions: Microvascular Imaging Versus Conventional Color and Power Doppler Imaging. Ultrason Imaging 2021; 43: 273-281 DOI: 10.1177/01617346211029542. (PMID: 34236008)
- 7 Bae JS, Lee JM, Jeon SK. et al. Comparison of MicroFlow Imaging with color and power Doppler imaging for detecting and characterizing blood flow signals in hepatocellular carcinoma. Ultrasonography 2020; 39: 85-93 DOI: 10.14366/usg.19033.
- 8 Park AY, Seo BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography 2018; 37: 98-106 DOI: 10.14366/usg.17043. (PMID: 29025210)
- 9 Aziz MU, Eisenbrey JR, Deganello A. et al. Microvascular Flow Imaging: A State-of-the-Art Review of Clinical Use and Promise. Radiology 2022; 305: 250-264 DOI: 10.1148/radiol.213303. (PMID: 36165794)
- 10 Golatta M, Pfob A, Büsch C. et al. The Potential of Shear Wave Elastography to Reduce Unnecessary Biopsies in Breast Cancer Diagnosis: An International, Diagnostic, Multicenter Trial. Ultraschall in Med 2023; 44: 162-168 DOI: 10.1055/a-1543-6156. (PMID: 34425600)
- 11 Shin HC, Roth HR, Gao M. et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging 2016; 35: 1285-1298 DOI: 10.1109/tmi.2016.2528162. (PMID: 26886976)
- 12 Vogel-Minea CM, Bader W, Blohmer JU. et al. Best Practice Guideline – Empfehlungen der DEGUM zur Durchführung und Beurteilung der Mammasonografie. TEIL II – Additive und fakultative Anwendungsmodalitäten, Qualitätssicherung 2023; 44: 520-536 DOI: 10.1055/a-2020-9904.
- 13 Bi WL, Hosny A, Schabath MB. et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69: 127-157 DOI: 10.3322/caac.21552. (PMID: 30720861)
- 14 Qian X, Zhang B, Liu S. et al. A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network. Eur Radiol 2020; 30: 3023-3033 DOI: 10.1007/s00330-019-06610-0. (PMID: 32006174)
- 15 Qian X, Pei J, Zheng H. et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat Biomed Eng 2021; 5: 522-532 DOI: 10.1038/s41551-021-00711-2.
- 16 Shen Y, Shamout FE, Oliver JR. et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat Commun 2021; 12: 5645 DOI: 10.1038/s41467-021-26023-2. (PMID: 34561440)
- 17 Yu TF, He W, Gan CG. et al. Deep learning applied to two-dimensional color Doppler flow imaging ultrasound images significantly improves diagnostic performance in the classification of breast masses: a multicenter study. Chin Med J (Engl) 2021; 134: 415-424 DOI: 10.1097/cm9.0000000000001329.
- 18 Liu H, Hou CJ, Tang JL. et al. Deep learning and ultrasound feature fusion model predicts the malignancy of complex cystic and solid breast nodules with color Doppler images. Sci Rep 2023; 13: 10500 DOI: 10.1038/s41598-023-37319-2.
- 19 Oquab M, Bottou L, Laptev I. et al. Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition 2014; 1717-1724
- 20 Koh J, Lee E, Han K. et al. Diagnosis of thyroid nodules on ultrasonography by a deep convolutional neural network. Scientific Reports 2020; 10: 15245 DOI: 10.1038/s41598-020-72270-6. (PMID: 32943696)
- 21 Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Nips’12 2012; 1097-1105
- 22 Iandola FN, Han S, Moskewicz MW. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and. 2016
- 23 Russakovsky O, Deng J, Su H. et al. Imagenet large scale visual recognition challenge. International journal of computer vision 2015; 115: 211-252
- 24 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014
- 25 Szegedy C, Liu W, Jia Y. et al. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition 2015; 1-9
- 26 He K, Zhang X, Ren S. et al. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016; 770-778
- 27 Szegedy C, Vanhoucke V, Ioffe S. et al. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition 2016; 2818-2826
- 28 Park AY, Seo BK, Woo OH. et al. The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: comparison with colour and power Doppler imaging regarding diagnostic performance. Clin Radiol 2018; 73: 304-311 DOI: 10.1016/j.crad.2017.10.006.
- 29 Zhu YC, Zu DM, Zhang Y. et al. A comparative study on superb microvascular imaging and conventional ultrasonography in differentiating BI-RADS 4 breast lesions. Oncol Lett 2019; 18: 3202-3210 DOI: 10.3892/ol.2019.10603. (PMID: 31452797)
- 30 Ma Y, Li G, Li J. et al. The Diagnostic Value of Superb Microvascular Imaging (SMI) in Detecting Blood Flow Signals of Breast Lesions: A Preliminary Study Comparing SMI to Color Doppler Flow Imaging. Medicine (Baltimore) 2015; 94: e1502 DOI: 10.1097/md.0000000000001502. (PMID: 26356718)
- 31 Park AY, Kwon M, Woo OH. et al. A Prospective Study on the Value of Ultrasound Microflow Assessment to Distinguish Malignant from Benign Solid Breast Masses: Association between Ultrasound Parameters and Histologic Microvessel Densities. Korean J Radiol 2019; 20: 759-772 DOI: 10.3348/kjr.2018.0515.
- 32 Chae EY, Yoon GY, Cha JH. et al. Added Value of the Vascular Index on Superb Microvascular Imaging for the Evaluation of Breast Masses: Comparison With Grayscale Ultrasound. J Ultrasound Med 2021; 40: 715-723 DOI: 10.1002/jum.15441.