Subscribe to RSS
DOI: 10.1055/a-2253-9588
3D ultrasound evaluation of fetal ears in prenatal syndrome diagnosis – a comparative study
3D-Ultraschall-Beurteilung fetaler Ohren in der pränatalen Syndromdiagnostik – eine VergleichsstudieAbstract
Purpose The aim of the study was to assess fetal ears on prenatal 3D ultrasound and compare ear surface patterns and measurements between fetuses with syndromes and healthy fetuses.
Materials and Methods Our study is based on 3D ultrasound images of 100 fetuses between the 20th and 37th week of gestation. We compared 50 ears of fetuses with syndromes (syndrome group) to 50 gestational age-matched ears of healthy fetuses (control group). The syndrome group consisted of fetuses with Trisomy 21 (n=13), Trisomy 18 (n=9) and other syndromes (n=28). The evaluation was based on measuring the ear length and width as well as developing categories to describe and compare different ear surface anomalies.
Results Ears of fetuses with Trisomy 18 were on average 0.423 cm smaller in length (P<0.001) and 0.123 cm smaller in width (P=0.031) and grew on average 0.046 cm less in length per week of gestation (P=0.027) than those of healthy fetuses. Ears of fetuses with Trisomy 21 differed from healthy fetuses regarding the form of the helix (P=0.013) and the ratio of the concha to the auricle (P=0.037). Fetuses with syndromes demonstrated less ear surface details than their controls (syndrome group: P=0.018, P=0.005; other syndromes subgroup: P=0.020). We saw an increased richness of ear surface details at a later gestational age both in the fetuses with syndromes and the healthy fetuses.
Conclusion Ears of fetuses with Trisomy 18 were smaller than their matched controls. Fetuses with syndromes varied in the evaluation of their ear surface from those of healthy fetuses. The ear surface can be analyzed with 3D ultrasound and might be useful as a screening parameter in syndrome diagnosis in the future.
Zusammenfassung
Ziel Ziel unserer Studie war es, Oberflächenmuster und Messwerte der Ohren syndromaler und gesunder Feten mithilfe des pränatalen 3D-Ultraschalls zu bestimmen und zu vergleichen.
Material und Methode Unsere Studie basiert auf 3D-Ultraschallbildern von 100 Feten zwischen der 20. und 37. Schwangerschaftswoche. Wir verglichen 50 Ohren syndromaler Feten (Syndromgruppe) mit 50 Ohren gleichaltriger gesunder Feten (Kontrollgruppe). Die Syndromgruppe bestand aus Feten mit Trisomie 21 (n=13), Trisomie 18 (n=9) und sonstigen Syndromen (n=28). Die Auswertung basierte auf der Messung der Ohrenlänge und -breite sowie der Entwicklung von Kategorien verschiedener Oberflächenanomalien.
Ergebnisse Ohren von Feten mit Trisomie 18 waren durchschnittlich 0,423cm kürzer (P<0,001), 0,123cm schmaler (P=0,031) und wuchsen 0,046cm pro Schwangerschaftswoche weniger in der Länge (P=0,027) als die in der Kontrollgruppe. Ohren von Feten mit Trisomie 21 wichen gegenüber gesunden Feten in der Beurteilung der Helixform (P=0,013) und dem Verhältnis der Concha zur Ohrmuschel (P=0,037) ab. Das Detailreichtum der Ohrenoberfläche syndromaler Feten war gegenüber denen der Kontrollfeten erniedrigt (Syndromgruppe: P=0,018, P=0,005; sonstige Syndrome: P=0,020). Sowohl syndromale als auch gesunde Feten wiesen eine Zunahme des Detailreichtums der Ohrenoberfläche mit steigendem Gestationsalter auf.
Schlussfolgerungen Ohren von Feten mit Trisomie 18 waren kleiner als die der Kontrollgruppe. Ohren von syndromalen Feten unterschieden sich in der Bewertung ihrer Oberfläche von gesunden Feten. Die Ohrenoberfläche kann im 3D-Ultraschall analysiert werden und könnte als Screening-Parameter in der Syndromdiagnostik hilfreich sein.
Publication History
Received: 21 November 2023
Accepted after revision: 25 January 2024
Accepted Manuscript online:
25 January 2024
Article published online:
04 March 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol 2010; 686: 349-364
- 2 Biard J-M, Payrat S, Clapuyt P. et al. Antenatal diagnosis of CHARGE syndrome: Prenatal ultrasound findings and crucial role of fetal dysmorphic signs. About a series of 10 cases and review of literature. Eur J Med Genet 2021; 64: 104189
- 3 Werner H, Castro P, Daltro P. et al. Prenatal diagnosis of Apert syndrome using ultrasound, magnetic resonance imaging, and three-dimensional virtual/physical models: three case series and literature review. Childs Nerv Syst 2018; 34: 1563-1571
- 4 Gregg AR, Skotko BG, Benkendorf JL. et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med 2016; 18: 1056-1065
- 5 Yuan X, Yong W, Dai L. et al. The role of non-invasive prenatal testing and ultrasound in prenatal screening of fetal chromosomal abnormalities in singleton: a retrospective study. Ann Transl Med 2023; 11: 111
- 6 Awwad JT, Azar GB, Karam KS. et al. Ear length: a potential sonographic marker for Down syndrome. Int J Gynaecol Obstet 1994; 44: 233-238
- 7 Lettieri L, Rodis JF, Vintzileos AM. et al. Ear length in second-trimester aneuploid fetuses. Obstet Gynecol 1993; 81: 57-60
- 8 Bürkel K, Krämer U, Möllers M. et al. 3D Ultrasound Evaluation of the Fetal Ear – Comparison of an xMatrix Probe with a Conventional Mechanical Probe. Ultraschall in Med 2017; 38: 508-514
- 9 Kurjak A, Azumendi G, Andonotopo W. et al. Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 2007; 196: 16-28
- 10 Wei J, Ran S, Yang Z. et al. Prenatal ultrasound screening for external ear abnormality in the fetuses. Biomed Res Int 2014; 2014: 357564
- 11 Sondern K, Kreitz K, Hammer K. et al. 3D Ultrasound Evaluation of the Fetal Outer Ear: Novel Biometry Ratio and Comparison of Different Surface Display Modes. Fetal Diagn Ther 2019; 46: 200-206
- 12 Yeo L, Guzman ER, Ananth CV. et al. Prenatal detection of fetal aneuploidy by sonographic ear length. J Ultrasound Med 2003; 22: 565-576
- 13 Birnholz JC, Farrell EE. Fetal ear length. Pediatrics 1988; 81: 555-558
- 14 Shimizu T, Salvador L, Hughes-Benzie R. et al. The role of reduced ear size in the prenatal detection of chromosomal abnormalities. Prenat Diagn 1997; 17: 545-549
- 15 Chitkara U, Lee L, Oehlert JW. et al. Fetal ear length measurement: a useful predictor of aneuploidy?. Ultrasound Obstet Gynecol 2002; 19: 131-135
- 16 Chang CH, Chang FM, Yu CH. et al. Fetal ear assessment and prenatal detection of aneuploidy by the quantitative three-dimensional ultrasonography. Ultrasound Med Biol 2000; 26: 743-749
- 17 Bartel-Friedrich S, Wulke C. Classification and diagnosis of ear malformations. GMS Curr Top Otorhinolaryngol Head Neck Surg 2007; 6: Doc05
- 18 Conway H, Wagner KJ. Congenital anomalies of the head and neck as reported on birth certificates in New York City, 1952 to 1962 (inclusive). Plast Reconstr Surg 1965; 36: 71-79
- 19 Zhao H, Ma L, Qi X. et al. A Morphometric Study of the Newborn Ear and an Analysis of Factors Related to Congenital Auricular Deformities. Plast Reconstr Surg 2017; 140: 147-155
- 20 Hill MA. Early human development. Clin Obstet Gynecol 2007; 50: 2-9
- 21 Hatanaka AR, Rolo LC, Mattar R. et al. Reference intervals for fetal ear length between 19 and 24 weeks of pregnancy on 3-dimensional sonography. J Ultrasound Med 2011; 30: 1185-1190
- 22 Merz E, Welter C. 2D and 3D Ultrasound in the evaluation of normal and abnormal fetal anatomy in the second and third trimesters in a level III center. Ultraschall in Med 2005; 26: 9-16
- 23 Shih JC, Shyu MK, Lee CN. et al. Antenatal depiction of the fetal ear with three-dimensional ultrasonography. Obstet Gynecol 1998; 91: 500-505
- 24 Stirnemann JJ, Besson R, Spaggiari E. et al. Development and clinical validation of real-time artificial intelligence diagnostic companion for fetal ultrasound examination. Ultrasound Obstet Gynecol 2023;
- 25 Tang J, Han J, Xue J. et al. A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound. Biomedicines 2023; 11: 1756