Ultraschall Med
DOI: 10.1055/a-2257-8557
Original Article

Bridging the notch: quantification of the end diastolic notch to better predict fetal growth restriction

Quantifizierung des enddiastolischen Notching für eine bessere Vorhersage der fetalen Wachstumsrestriktion
Sheila Yu
1   DAN Women and Babies Program, Sunnybrook Health Sciences Centre, Toronto, Canada (Ringgold ID: RIN71545)
2   Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
,
Ananya Gopika Nair
1   DAN Women and Babies Program, Sunnybrook Health Sciences Centre, Toronto, Canada (Ringgold ID: RIN71545)
2   Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
,
Tianhua Huang
2   Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
3   Department of genetics, North York General Hospital, Toronto, Canada (Ringgold ID: RIN8613)
,
Nir Melamed
1   DAN Women and Babies Program, Sunnybrook Health Sciences Centre, Toronto, Canada (Ringgold ID: RIN71545)
2   Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
,
Elad Mei Dan
2   Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
4   Department of Obstetrics and Gynecology, North York General Hospital, Toronto, Canada (Ringgold ID: RIN8613)
,
Amir Aviram
1   DAN Women and Babies Program, Sunnybrook Health Sciences Centre, Toronto, Canada (Ringgold ID: RIN71545)
2   Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
› Author Affiliations

Abstract

Purpose We aimed to evaluate several quantitative methods to describe the diastolic notch (DN) and compare their performance in the prediction of fetal growth restriction.

Materials and Methods Patients who underwent a placental scan at 16–26 weeks of gestation and delivered between Jan 2016 and Dec 2020 were included. The uterine artery pulsatility index was measured for all of the patients. In patients with a DN, it was quantified using the notch index and notch depth index. Odds ratios for small for gestational age neonates (defined as birth weight <10th and <5th percentile) were calculated. Predictive values of uterine artery pulsatility, notch, and notch depth index for fetal growth restriction were calculated.

Results Overall, 514 patients were included, with 69 (13.4%) of them delivering a small for gestational age neonate (birth weight<10th percentile). Of these, 20 (20.9%) had a mean uterine artery pulsatility index >95th percentile, 13 (18.8%) had a unilateral notch, and 11 (15.9%) had a bilateral notch. 16 patients (23.2%) had both a high uterine artery pulsatility index (>95th percentile) and a diastolic notch. Comparison of the performance between uterine artery pulsatility, notch, and notch depth index using receiver operating characteristic curves to predict fetal growth restriction <10th percentile found area under the curve values of 0.659, 0.679, and 0.704, respectively, with overlapping confidence intervals.

Conclusion Quantifying the diastolic notch at 16–26 weeks of gestation did not provide any added benefit in terms of prediction of neonatal birth weight below the 10th or 5th percentile for gestational age, compared with uterine artery pulsatility index.

Zusammenfassung

Ziel Unser Ziel war es, verschiedene quantitative Methoden zur Beschreibung des diastolischen Notchings (DN) zu evaluieren und deren Leistung bei der Vorhersage einer fetalen Wachstumsrestriktion zu vergleichen.

Material und Methoden Eingeschlossen wurden Patientinnen, bei denen zwischen der 16. und 26. Schwangerschaftswoche eine Plazenta-Untersuchung durchgeführt wurde und die zwischen Januar 2016 und Dezember 2020 entbunden hatten. Bei allen Frauen wurde der Pulsatilitätsindex der A. uterina gemessen. Bei Patientinnen mit DN wurde dieses mittels Notch-Index und des Notch-Tiefenindex quantifiziert. Es wurden Odds-Ratios für SGA-Neugeborene (small for gestational age: Geburtsgewicht <10. und <5. Perzentile) berechnet. Die prädiktiven Werte der Pulsatilität der A. uterina, des Notch-Index und des Notch-Tiefenindex für fetale Wachstumsrestriktion wurden berechnet.

Ergebnisse Insgesamt wurden 514 Patientinnen eingeschlossen, von denen 69 (13,4%) ein SGA-Neugeborenes (Geburtsgewicht <10. Perzentile) zur Welt brachten. Von diesen hatten 20 (20,9%) einen durchschnittlichen Pulsatilitätsindex der A. uterina, der über der 95. Perzentile lag, 13 (18,8%) hatten ein unilaterales Notching und 11 (15,9%) ein bilaterales Notching. Sechzehn Frauen (23,2%) hatten sowohl einen hohen Pulsatilitätsindex der A. uterina (>95. Perzentile) sowie ein diastolisches Notching. Die Leistung des Pulsatilitätsindex der A. uterina sowie des Notch- und des Notch-Tiefenindex bezüglich der Vorhersage einer fetalen Wachstumsrestriktion (<10. Perzentile) wurde mittels der ROC-Kurve (receiver operating characteristic curve) verglichen. Die Werte für die AUC (area under the curve) betrugen 0,659 (PI der A. uterina), 0,679 (Notch) bzw. 0,704 (Notch-Tiefenindex), mit jeweils überlappenden Konfidenzintervallen.

Schlussfolgerung Die Quantifizierung des diastolischen Notchs in der 16.–26. Schwangerschaftswoche brachte im Vergleich zum Pulsatilitätsindex der A. uterina keinen zusätzlichen Nutzen in Bezug auf die Vorhersage eines Geburtsgewichts unterhalb der 10. oder 5. Perzentile.



Publication History

Received: 11 August 2023

Accepted after revision: 31 January 2024

Accepted Manuscript online:
31 January 2024

Article published online:
29 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 2011; 25: 391-403 DOI: 10.1016/j.bpobgyn.2011.01.006. (PMID: 21333604)
  • 2 Suhag A, Berghella V. Intrauterine Growth Restriction (IUGR): Etiology and Diagnosis. Curr Obstet Gynecol Rep 2013; 2: 102-111
  • 3 Prefumo F, Sebire NJ, Thilaganathan B. Decreased endovascular trophoblast invasion in first trimester pregnancies with high-resistance uterine artery Doppler indices. Hum Reprod 2004; 19: 206-209 DOI: 10.1093/humrep/deh037. (PMID: 14688183)
  • 4 Kennedy AM, Woodward PJ. A Radiologist’s Guide to the Performance and Interpretation of Obstetric Doppler US. Radiographics 2019; 39: 893-910 DOI: 10.1148/rg.2019180152. (PMID: 31059392)
  • 5 Tercanli S, Kagan KO, Pertl B. Integrating Doppler Ultrasound into Obstetrics Management. Ultraschall in Med 2023; 44 (01) 10-13 DOI: 10.1055/a-1985-4230. (PMID: 36750052)
  • 6 Faber R, Heling KS, Steiner H. et al. Doppler ultrasound in pregnancy – quality requirements of DEGUM and clinical application (part 2). Ultraschall in Med 2021; 42 (05) 541-550 DOI: 10.1055/a-1452-9898. (PMID: 33906258)
  • 7 Ohkuchi A, Minakami H, Sato I. et al. Predicting the risk of pre-eclampsia and a small-for-gestational-age infant by quantitative assessment of the diastolic notch in uterine artery flow velocity waveforms in unselected women. Ultrasound Obstet Gynecol 2000; 16: 171-178 DOI: 10.1046/j.1469-0705.2000.00192.x. (PMID: 11117089)
  • 8 Coppens M, Loquet P, Kollen M. et al. Longitudinal evaluation of uteroplacental and umbilical blood flow changes in normal early pregnancy. Ultrasound Obstet Gynecol 1996; 7: 114-121 DOI: 10.1046/j.1469-0705.1996.07020114.x. (PMID: 8776236)
  • 9 Harman CR, Baschat AA. Comprehensive assessment of fetal wellbeing: which Doppler tests should be performed?. Curr Opin Obstet Gynecol 2003; 15: 147-157 DOI: 10.1097/00001703-200304000-00010. (PMID: 12634607)
  • 10 Figueras F, Caradeux J, Crispi F. et al. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol 2018; 218: S790-S802.e1
  • 11 Kingdom JC, Audette MC, Hobson SR. et al. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol 2018; 218: S803-S817 DOI: 10.1016/j.ajog.2017.11.575. (PMID: 29254754)
  • 12 Khalil A, Thilaganathan B. Role of uteroplacental and fetal Doppler in identifying fetal growth restriction at term. Best Pract Res Clin Obstet Gynaecol 2017; 38: 38-47 DOI: 10.1016/j.bpobgyn.2016.09.003. (PMID: 27720309)
  • 13 Bower S, Kingdom J, Campbell S. Objective and subjective assessment of abnormal uterine artery Doppler flow velocity waveforms. Ultrasound Obstet Gynecol 1998; 12: 260-264 DOI: 10.1046/j.1469-0705.1998.12040260.x. (PMID: 9819858)
  • 14 Aquilina J, Barnett A, Thompson O. et al. Comprehensive analysis of uterine artery flow velocity waveforms for the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2000; 16: 163-170 DOI: 10.1046/j.1469-0705.2000.00217.x. (PMID: 11117088)
  • 15 Aardema MW, DE Wolf BT, Saro MC. et al. Quantification of the diastolic notch in Doppler ultrasound screening of uterine arteries. Ultrasound Obstet Gynecol 2000; 16: 630-634 DOI: 10.1046/j.1469-0705.2000.00289.x. (PMID: 11169369)
  • 16 Dave A, Joshi R, Sooruthiya S. et al. Role of uterine artery Doppler in prediction of FGR in high risk pregnancies in 20–24 weeks. Int J Reprod Contraception, Obstet Gynecol 2017; 6: 1388
  • 17 Phupong V, Dejthevaporn T, Tanawattanacharoen S. et al. Predicting the risk of preeclampsia and small for gestational age infants by uterine artery Doppler in low-risk women. Arch Gynecol Obstet 2003; 268: 158-161 DOI: 10.1007/s00404-002-0361-0. (PMID: 12942242)
  • 18 Papageorghiou AT, Yu CK, Bindra R. et al. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18: 441-449 DOI: 10.1046/j.0960-7692.2001.00572.x. (PMID: 11844162)
  • 19 Chien PF, Arnott N, Gordon A. et al. How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. BJOG 2000; 107: 196-208 DOI: 10.1111/j.1471-0528.2000.tb11690.x. (PMID: 10688503)
  • 20 Cruz-Martinez R, Savchev S, Cruz-Lemini M. et al. Clinical utility of third-trimester uterine artery Doppler in the prediction of brain hemodynamic deterioration and adverse perinatal outcome in small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2015; 45: 273-278 DOI: 10.1002/uog.14706. (PMID: 25346413)
  • 21 Parry S, Sciscione A, Haas DM. et al. Role of early second-trimester uterine artery Doppler screening to predict small-for-gestational-age babies in nulliparous women. Am J Obstet Gynecol 2017; 217: 594.e1-594.e10
  • 22 Becker R, Vonk R. Doppler sonography of uterine arteries at 20–23 weeks: depth of notch gives information on probability of adverse pregnancy outcome and degree of fetal growth restriction in a low-risk population. Fetal Diagn Ther 2010; 27: 78-86 DOI: 10.1159/000274377. (PMID: 20093804)
  • 23 Park YW, Cho JS, Choi HM. et al. Clinical significance of early diastolic notch depth: uterine artery Doppler velocimetry in the third trimester. Am J Obstet Gynecol 2000; 182: 1204-1209 DOI: 10.1067/mob.2000.104840. (PMID: 10819859)
  • 24 Martins JG, Biggio JR. Society for Maternal-Fetal Medicine (SMFM). et al. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am J Obstet Gynecol 2020; 223: B2-B17