Zusammenfassung
Hintergrund Große und progrediente Datenmengen führen zu einer Verknappung der Zeit des Radiologen.
Der Einsatz auf künstlicher Intelligenz (KI) basierender Systeme bietet Möglichkeiten,
den Radiologen zu entlasten. Die KI-Systeme sind in der Regel für ein radiologisches
Gebiet optimiert. Der Radiologe muss die Grundzüge ihrer technischen Funktion verstehen,
damit er Schwächen und mögliche Fehler des Systems einschätzen und auf der anderen
Seite Stärken des Systems nutzen kann. Diese „Erklärbarkeit“ schafft Vertrauen in
ein KI-System und zeigt dessen Grenzen auf.
Methode Durchführung einer erweiterten Medline-Suche bis 10/2023 zum Thema „Radiologie,
künstliche Intelligenz, Zuweiser-Interaktion, Patienten-Interaktion, Arbeitszufriedenheit,
Befundkommunikation“. Es wurden subjektiv weitere relevante Artikel für dieses narrative
Review berücksichtigt.
Ergebnisse Der KI-Einsatz ist gerade in der Radiologie weit fortgeschritten. Dem Radiologen
sollten vom Programmierer verständliche Erklärungen der Funktionsweise seines Systems
geliefert werden. Alle am Markt befindlichen Systeme haben Stärken und Schwächen.
Die Optimierungen sind teilweise unbeabsichtigt spezifisch, da sie häufig zu genau
an eine bestimmte, in der Praxis oft nicht vorhandene Umgebung angepasst sind – „Overfitting“
genannt. In den Systemen gibt es auch spezifische Schwachstellen, sogenannte „gegnerische
Beispiele“, die zu fatalen Fehldiagnosen der KI führen, obwohl diese optisch für den
Radiologen nicht von einem unauffälligen Befund zu unterscheiden sind. Der Benutzer
muss wissen, auf welche Erkrankungen das System eingelernt ist, welche Organsysteme
erkannt und mittels KI berücksichtigt werden und auch entsprechend, welche nicht
ordnungsgemäß erfasst werden. Damit kann und muss der Benutzer kritisch die Ergebnisse
überprüfen und gegebenenfalls den Befund anpassen. Richtig eingesetzte KI kann zu
Zeitersparnis beim Radiologen führen. Wenn er seine Systeme kennt, muss er nur wenig
Zeit aufwenden, um die Ergebnisse zu überprüfen. Die so gewonnene Zeit kann für
die Kommunikation mit Patienten und Zuweisern genutzt werden und so dazu beitragen,
eine höhere Zufriedenheit im Beruf zu erzielen.
Schlussfolgerung Die Radiologie ist ein sich ständig weiter entwickelndes Fachgebiet mit enormer
Verantwortung, da die Radiologie häufig die zu behandelnde Diagnose stellt. Zur Entlastung
und Unterstützung sollten konsequent KI-gestützte Systeme genutzt werden, deren
Stärken, Schwächen und Einsatzgebiete der Radiologe kennen muss, um Zeit zu sparen,
die er für zielgerichtete Kommunikation einsetzen kann.
Kernaussagen
Erklärbare KI-Systeme tragen zu einer Verbesserung des Arbeitsablaufes und zur Zeitersparnis
bei.
Der Arzt muss Ergebnisse der KI kritisch überprüfen, dabei Grenzen der KI kennen
und berücksichtigen.
Die KI-Systeme liefern nur dann verlässliche Ergebnisse, wenn sie auf die Datenart
und Datenherkunft angepasst wurden.
Der kommunizierende, am Patienten interessierte Radiologe ist wichtig für die Sichtbarkeit
des Fachgebietes.
Zitierweise
Stueckle CA, Haage P. The radiologist as a physician – artificial intelligence as
a way to overcome tension between the patient, technology, and referring physicians
– a narrative review. Fortschr Röntgenstr 2024; 196: 1115 – 1124
Keywords diagnostic radiology - patient interaction - deep learning - artificial intelligence
- doctor patient relationship