Subscribe to RSS
DOI: 10.1055/a-2290-4781
Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study
Wertigkeit von Geräte-unabhängigem Deep-Learning Denoising in der Computertomographie: Eine Multiscanner-StudieAbstract
Purpose
To evaluate the effect of a vendor-agnostic deep learning denoising (DLD) algorithm on diagnostic image quality of non-contrast cranial computed tomography (ncCT) across five CT scanners.
Materials and Methods
This retrospective single-center study included ncCT data of 150 consecutive patients (30 for each of the five scanners) who had undergone routine imaging after minor head trauma. The images were reconstructed using filtered back projection (FBP) and a vendor-agnostic DLD method. Using a 4-point Likert scale, three readers performed a subjective evaluation assessing the following quality criteria: overall diagnostic image quality, image noise, gray matter-white matter differentiation (GM-WM), artifacts, sharpness, and diagnostic confidence. Objective analysis included evaluation of noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and an artifact index for the posterior fossa.
Results
In subjective image quality assessment, DLD showed constantly superior results compared to FBP in all categories and for all scanners (p<0.05) across all readers. The objective image quality analysis showed significant improvement in noise, SNR, and CNR as well as for the artifact index using DLD for all scanners (p<0.001).
Conclusion
The vendor-agnostic deep learning denoising algorithm provided significantly superior results in the subjective as well as in the objective analysis of ncCT images of patients with minor head trauma concerning all parameters compared to the FBP reconstruction. This effect has been observed in all five included scanners.
Key Points
-
Significant improvement of image quality for 5 scanners due to the vendor-agnostic DLD
-
Subjects were patients with routine imaging after minor head trauma
-
Reduction of artifacts in the posterior fossa due to the DLD
-
Access to improved image quality even for older scanners from different vendors
Citation Format
-
Kapper C, Müller L, Kronfeld A et al. Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study. Fortschr Röntgenstr 2024; DOI 10.1055/a-2290-4781
Zusammenfassung
Ziel
Auswertung der Wirkung eines herstellerunabhängigen Deep Learning Denoising-Algorithmus (DLD) auf die diagnostische Bildqualität kontrastloser kranialer Computertomografie (ncCT) für fünf CT-Scanner im Vergleich.
Material und Methoden
Diese retrospektive monozentrische Studie schloss ncCT-Daten von 150 konsekutiven Patienten (30 für jeden der fünf Scanner) ein, bei denen nach einem leichten Kopftrauma eine Routinebildgebung erfolgt war. Die Bilder wurden mittels gefilterter Rückprojektion (FBP) und einer herstellerunabhängigen DLD-Methode rekonstruiert. Anhand einer 4-Punkte-Likert-Skala führten drei Reader eine subjektive Bewertung durch, bei der die Qualitätskriterien allgemeine diagnostische Bildqualität, Bildrauschen, Differenzierung zwischen grauer und weißer Substanz (GM-WM), Artefakte, Bildschärfe und diagnostische Sicherheit bewertet wurden. Die objektive Analyse umfasste die Bewertung des Rauschens, des Kontrast-Rausch-Verhältnisses (CNR), des Signal-Rausch-Verhältnisses (SNR) und einen Artefaktindex für die Fossa cranii posterior.
Ergebnisse
Bei der subjektiven Auswertung der Bildqualität zeigte DLD im Vergleich zu FBP in allen Bewertungskategorien und für alle Scanner konstant bessere Ergebnisse (p<0,05) bei allen Readern. Die objektive Bildqualitätsanalyse zeigte bei allen Scannern eine signifikante Verbesserung des Rauschens, der SNR und der CNR sowie des Artefaktindexes durch das DLD (p<0,001).
Schlussfolgerung
Der herstellerunabhängige Deep Learning Denoising-Algorithmus lieferte im Vergleich zur FBP-Rekonstruktion bei allen Parametern sowohl in der subjektiven als auch in der objektiven Analyse deutlich bessere Ergebnisse für ncCT-Bilder von Patienten nach einem leichten Schädeltrauma. Dieser Effekt wurde bei allen fünf einbezogenen Scannern beobachtet.
Kernaussagen
-
Hochsignifikante Verbesserung der Bildqualität für alle 5 Scanner durch das herstellerunabhängige DLD
-
Eingeschlossen wurden Patienten mit Routinebildgebung nach leichtem Schädeltrauma
-
Verringerung von Artefakten in der hinteren Schädelgrube durch das DLD
-
Zugang zu verbesserter Bildqualität auch für ältere Geräte unterschiedlicher Hersteller möglich
Publication History
Received: 14 December 2023
Accepted after revision: 15 March 2024
Article published online:
15 May 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Neifert SN, Chapman EK, Martini ML. et al. Aneurysmal Subarachnoid Hemorrhage: the Last Decade. Transl Stroke Res 2021; 12 (03) 428-446 DOI: 10.1007/s12975-020-00867-0. (PMID: 33078345)
- 2 Currie S, Saleem N, Straiton JA. et al. Imaging assessment of traumatic brain injury. Postgrad Med J 2016; 92: 41-50 DOI: 10.1136/postgradmedj-2014-133211. (PMID: 26621823)
- 3 Alagic Z, Diaz Cardenas J, Halldorsson K. et al. Deep learning versus iterative image reconstruction algorithm for head CT in trauma. Emerg Radiol 2022; 29 (02) 339-352
- 4 Schöckel L, Jost G, Seidensticker P. et al. Developments in X-Ray Contrast Media and the Potential Impact on Computed Tomography. Invest Radiol 2020; 55 (09) 592-597 DOI: 10.1097/RLI.0000000000000696. (PMID: 32701620)
- 5 Dieckmeyer M, Sollmann N, Kupfer K. et al. Computed Tomography of the Head. Clin Neuroradiol 2023; 33: 591-610 DOI: 10.1007/s00062-023-01271-5. (PMID: 36862232)
- 6 Bos D, Guberina N, Zensen S. et al. Radiation Exposure in Computed Tomography. Dtsch Arztebl Int 2023; 120 (09) 135-141 DOI: 10.3238/arztebl.m2022.0395. (PMID: 36633449)
- 7 Miglioretti DL, Johnson E, Williams A. et al. The Use of Computed Tomography in Pediatrics and the Associated Radiation Exposure and Estimated Cancer Risk. JAMA Pediatr 2013; 167 (08) 700-707 DOI: 10.1001/jamapediatrics.2013.311. (PMID: 23754213)
- 8 Arndt C, Güttler F, Heinrich A. et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr 2021; 193 (03) 252-261 DOI: 10.1055/a-1248-2556. (PMID: 33302311)
- 9 Kataria B, Nilsson Althén J, Smedby Ö. et al. Image Quality and Potential Dose Reduction using Advanced Modeled Iterative Reconstruction (ADMIRE) in Abdominal CT – A Review. Radiat Prot Dosimetry 2021; 195: 177-187
- 10 Ahn C, Heo C, Kim JH. Combined low-dose simulation and deep learning for CT denoising: application in ultra-low-dose chest CT. Proc SPIE Int Soc Opt Eng 2019; DOI: 10.1117/12.2521539.short.
- 11 Cho YJ, Schoepf UJ, Silverman JR. et al. Iterative Image Reconstruction Techniques: Cardiothoracic Computed Tomography Applications. J Thorac Imaging 2014; 29 (04) 198-208 DOI: 10.1097/RTI.0000000000000041. (PMID: 24662334)
- 12 Bodelle B, Wichmann JL, Scholtz JE. et al. Iterative Reconstruction Leads to Increased Subjective and Objective Image Quality in Cranial CT in Patients With Stroke. AJR Am J Roentgenol 2015; 205 (03) 618-622
- 13 Kim I, Kang H, Yoon HJ. et al. Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Neuroradiology 2021; 63 (06) 905-912
- 14 Sun J, Li H, Wang B. et al. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection. BMC Med Imaging 2021; 21 (01) 108 DOI: 10.1186/s12880-021-00637-w. (PMID: 34238229)
- 15 Oostveen LJ, Meijer FJA, de Lange F. et al. Deep learning–based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Eur Radiol 2021; 31 (08) 5498-5506 DOI: 10.1007/s00330-020-07668-x. (PMID: 33693996)
- 16 Park C, Choo KS, Jung Y. et al. CT iterative vs deep learning reconstruction: comparison of noise and sharpness. Eur Radiol 2021; 31 (05) 3156-3164 DOI: 10.1007/s00330-020-07358-8. (PMID: 33057781)
- 17 Jiang B, Li N, Shi X. et al. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology 2022; 303 (01) 202-212
- 18 Choi H, Chang W, Kim JH. et al. Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study. Eur Radiol 2022; 32 (02) 1247-1255
- 19 Hong JH, Park EA, Lee W. et al. Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction. Korean J Radiol 2020; 21 (10) 1165-1177
- 20 Yeoh H, Hong SH, Ahn C. et al. Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT. Korean J Radiol 2021; 22 (11) 1850-1857 DOI: 10.3348/kjr.2021.0140. (PMID: 34431248)
- 21 Park S, Yoon JH, Joo I. et al. Image quality in liver CT: low-dose deep learning vs standard-dose model-based iterative reconstructions. Eur Radiol 2022; 32 (05) 2865-2874 DOI: 10.1007/s00330-021-08380-0. (PMID: 34821967)
- 22 Lee S, Choi YH, Cho YJ. et al. Noise reduction approach in pediatric abdominal CT combining deep learning and dual-energy technique. Eur Radiol 2021; 31 (04) 2218-2226 DOI: 10.1007/s00330-020-07349-9. (PMID: 33030573)
- 23 Kolb M, Storz C, Kim JH. et al. Effect of a novel denoising technique on image quality and diagnostic accuracy in low-dose CT in patients with suspected appendicitis. Eur J Radiol 2019; 116: 198-204
- 24 FDA. Premarket Notification (device name ClariCT.AI): FDA. 2019 https://www.accessdata.fda.gov/cdrh_docs/pdf18/K183460.pdf
- 25 Hsieh J, Liu E, Nett B. et al. A new era of image reconstruction: TrueFidelity™, Technical white paper on deep learning image reconstruction. 2019 https://www.gehealthcare.de/-/jssmedia/files/truefidelity/truefidelity-white-paper-jb68676xx-doc2287426.pdf?rev=-1
- 26 Nam JG, Ahn C, Choi H. et al. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques. Eur Radiol 2021; 31 (07) 5139-5147 DOI: 10.1007/s00330-021-07733-z. (PMID: 33590320)
- 27 Anam C, Arif I, Haryanto F. et al. An Improved Method of Automated Noise Measurement System in CT Images. J Biomed Phys Eng 2021; 11 (02) 163-174 DOI: 10.31661/jbpe.v0i0.1198. (PMID: 33937124)
- 28 Chun M, Choi YH, Kim JH. Automated measurement of CT noise in patient images with a novel structure coherence feature. Phys Med Biol 2015; 60 (23) 9107-9122 DOI: 10.1088/0031-9155/60/23/9107. (PMID: 26561914)
- 29 Altmann S, Abello Mercado MA, Ucar FA. et al. Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction; Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT. Diagnostics (Basel) 2023; 13 (09) 1534
- 30 Dobbins 3rd JT, Samei E, Ranger NT. et al. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys 2006; 33 (05) 1466-1475 DOI: 10.1118/1.2188819. (PMID: 16752581)
- 31 Shrimpton PC, Jansen JT, Harrison JD. Updated estimates of typical effective doses for common CT examinations in the UK following the 2011 national review. Br J Radiol 2016; 89 (1057) 20150346 DOI: 10.1259/bjr.20150346. (PMID: 26544160)
- 32 Wong KK, Cummock JS, He Y. et al. Retrospective study of deep learning to reduce noise in non-contrast head CT images. Comput Med Imaging Graph 2021; 94: 101996