Nervenheilkunde 2024; 43(09): 499-505
DOI: 10.1055/a-2313-3608
Schwerpunkt

Verkörperte Begriffe

Neuronale Mechanismen, aktuelle Befunde und Bedeutung für PsychopathologieEmbodied conceptsNeural mechanisms, current evidence and implication for psychopathology
Markus Kiefer
1   Sektion für Kognitive Elektrophysiologie, Klinik für Psychiatrie und Psychotherapie III, Universität Ulm
› Author Affiliations

ZUSAMMENFASSUNG

Im Langzeitgedächtnis gespeicherte Begriffe sind die Grundbausteine des Denkens, da sie die Bedeutung von Objekten, Ereignissen und abstrakten Ideen konstituieren. Theorien der verkörperten Kognition gehen davon aus, dass Begriffe im Wesentlichen auf die Reaktivierung von sinnlichen Gedächtnisspuren im Zusammenhang mit Wahrnehmung, Handlung und Introspektion in modalen Arealen des Gehirns beruhen. Dieser Artikel gibt einen umfassenden Überblick über die neueste Forschung zur Verkörperung des Gedächtnisses für konkrete und abstrakte Begriffe. Die beschriebenen Befunde zeigen, dass selbst abstrakte Begriffe wie „Konditionierung“ oder „Verlangen“ auf Aktivität in modalen, erfahrungsbasierten neuronalen Systemen beruhen und nicht abstrakt-symbolisch abgespeichert sind. Eine an der Theorie der verkörperten Kognition orientierte neurowissenschaftliche Forschung an Patienten mit psychischen Erkrankungen könnte spannende Einblicke in eine möglicherweise veränderte funktionelle Neuroanatomie der Begriffsrepräsentation und deren therapieinduzierte Plastizität geben.

ABSTRACT

Concepts stored in long-term memory are the basic building blocks of thought, as they constitute the meaning of objects, events and abstract ideas. Theories of embodied cognition assume that concepts are essentially based on the reactivation of sensory memory traces related to perception, action and introspection in modal areas of the brain. This article provides a comprehensive overview of recent research on the embodiment of the memory for concrete and abstract concepts. The findings described here show that even abstract concepts such as “conditioning” or “desire” are based on activity in modal, experience-based brain systems and are not stored in an abstract-symbolic manner. Neuroscientific research on patients with mental disorders within an embodied cognition framework could provide exciting insights into a possibly altered functional neuroanatomy of concept representation and its therapy-induced plasticity.



Publication History

Article published online:
27 August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ohlsson S, Lehtinen E. Abstraction and the acquisition of complex ideas. Int J Educ Res 1997; 27 (01) 37-48 DOI: 10.1016/S0883-0355(97)88442-X.
  • 2 Kiefer M, Barsalou LW. Grounding the human conceptual system in perception, action, and internal states. In: Prinz W, Beisert M, Herwig A, Hrsg. Action science: Foundations of an emerging discipline. Cambridge: MIT Press; 2013: 381-407
  • 3 Kiefer M, Pulvermüller F. Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex 2012; 48: 805-25
  • 4 Kiefer M, Harpaintner M. Varieties of abstract concepts and their grounding in perception or action. Open Psychol 2020; 02: 119-37 DOI: 10.1515/psych-2020-0104.
  • 5 Spitzer M. Geist im Netz. Heidelberg: Spektrum, Akademischer Verlag; 1996
  • 6 Jackendoff R. Semantic structures. Cambridge, MA: MIT Press; 1990
  • 7 Humphreys GW, Riddoch MJ, Quinlan PT. Cascade processes in picture identification. Cognit Neuropsychol 1988; 05: 67-103
  • 8 Levelt WJ, Roelofs A, Meyer AS. A theory of lexical access in speech production. Behav Brain Sci 1999; 22 (01) 1-38 discussion –75
  • 9 Spitzer M. The psychopathology, neuropsychology, and neurobiology of associative and working memory in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1993; 243: 57-70
  • 10 Spitzer M. A cognitive neuroscience view of schizophrenic thought disorder. Schizophren Bull 1997; 23: 29-50
  • 11 Runes DD. Dictionary of Philosophy. Totowa, NJ: Littlefield, Adams, and Company; 1962
  • 12 Kiefer M, Hofmann C, Arndt PA. Embodied cognition. In: Tierney RJ, Rizvi F, Ercikan K, Hrsg. International Encyclopedia of Education (Fourth Edition). Oxford: Elsevier; 2023: 67-74
  • 13 Markie P. Rationalism vs. empiricism. In: Zalta ED, Hrsg. Stanford Encyclopedia of Philosophy (Fall 2008 Edition). Stanford: The Metaphysics Research Lab; 2008
  • 14 Quillian MR. The teachable language comprehender. Communications of the ACM 1969; 12: 459-76
  • 15 nderson JR. The architecture of cognition. Hillsdayle, NJ: Lawrence Erlbaum Associates, Inc; 1983
  • 16 Tyler LK, Moss HE. Towards a distributed account of conceptual knowledge. Trends Cognit Sci 2001; 05: 244-52
  • 17 Pylyshyn ZW. Computation and cognition: Towards a foundation for cognitive science. Cambridge: MIT Press; 1984
  • 18 Mahon BZ. What is embodied about cognition?. Lang Cogn Neurosci 2015; 30 (04) 420-9 DOI: 10.1080/23273798.2014.987791.
  • 19 McClelland JL, Rogers TT. The parallel distributed processing approach to semantic cognition. Nat Rev Neurosci 2003; 04 (04) 310-22
  • 20 Rogers TT, Lambon Ralph MA. et al Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychol Rev 2004; 111 (01) 205-35
  • 21 Hoffman P, Pobric G, Drakesmith M. et al Posterior middle temporal gyrus is involved in verbal and non-verbal semantic cognition: Evidence from rTMS. Aphasiology 2012; 26 (09) 1119-30 DOI: 10.1080/02687038.2011.608838.
  • 22 Binder JR. In defense of abstract conceptual representations. Psychon Bull Rev 2016; 23 (04) 1096-108 DOI: 10.3758/s13423-015-0909-1.
  • 23 Machery E. Concept empiricism: A methodological critique. Cognition 2007; 104: 19-46
  • 24 Mahon BZ. The burden of embodied cognition. Can J Exp Psychol 2015; 69 (02) 172-8 DOI: 10.1037/cep0000060.
  • 25 Kiefer M, Spitzer M. The limits of a distributed account of conceptual knowledge. Trends Cognit Sci 2001; 05 (11) 469-71
  • 26 Kiefer M, Spitzer M.. How handwriting shapes literacy acquisition and general cognition In: Ye Y, et al. Hrsg. Routledge International Handbook of Visual-motor Skills, Handwriting, and Spelling: Theory, Research, and Practice. New York: Routledge; 2023: 111-22
  • 27 Barsalou LW. Grounded cognition. Ann Rev Psychol 2008; 59: 617-45
  • 28 Pulvermüller F, Fadiga L. Active perception: Sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 2010; 11 (05) 351-60
  • 29 Lakoff G, Johnson M. Philosophy in the flesh: The embodied mind and its challenge to Western thought. New York: Basic Books; 1999
  • 30 Meteyard L, Cuadrado SR, Bahrami B. et al Coming of age: A review of embodiment and the neuroscience of semantics. Cortex 2012; 48 (07) 788-804 DOI: 10.1016/j.cortex.2010.11.002.
  • 31 Trumpp NM, Traub F, Kiefer M. Masked priming of conceptual features reveals differential brain activation during unconscious access to conceptual action and sound information. PLoS ONE 2013; 08 (05) e65910 DOI: 10.1371/journal.pone.0065910.
  • 32 Kuhnke P, Beaupain MC, Arola J. et al Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neurosci Biobehav Rev 2023; 144: 104994 DOI: 10.1016/j.neubiorev.2022.104994.
  • 33 Patterson K, Ralph MAL. The hub-and-spoke hypothesis of semantic memory. In: Hickok G, Small SL, Hrsg. Neurobiology of Language Burlington: Academic Press 2016: 765-75
  • 34 Kuhnke P, Kiefer M, Hartwigsen G. Conceptual representations in the default, control and attention networks are task-dependent and cross-modal. Brain Lang 2023; 244: 105313 DOI: 10.1016/j.bandl.2023.105313.
  • 35 Spitzer M, Braun U, Hermle L. et al Associative semantic network dysfunction in thought-disordered schizophrenic patients: Direct evidence from indirect semantic priming. Biol Psychiat 1993; 34: 864-77
  • 36 Kiefer M, Martens U, Weisbrod M. et al Increased unconscious semantic activation in schizophrenia patients with formal thought-disorder. Schizophr Res 2009; 114: 79-83
  • 37 Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W, Hrsg. Organization of memory. New York: Academic Press; 1972: 381-403
  • 38 Hoenig K, Sim E-J, Bochev V. et al Conceptual flexibility in the human brain: Dynamic recruitment of semantic maps from visual, motion and motor-related areas. J Cognit Neurosci 2008; 20 (10) 1799-814
  • 39 Kiefer M, Sim E-J, Herrnberger B. et al The sound of concepts: Four markers for a link between auditory and conceptual brain systems. J Neurosci 2008; 28 (47) 12224-30
  • 40 Spitzer M. Musik im Kopf. Stuttgart: Schattauer; 2002
  • 41 Hauk O, Johnsrude I, Pulvermüller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 2004; 41 (02) 301-7
  • 42 Simmons WK, Martin A, Barsalou LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex 2005; 15 (10) 1602-8
  • 43 Gonzalez J, Barros-Loscertales A, Pulvermüller F. et al Reading cinnamon activates olfactory brain regions. Neuroimage 2006; 32 (02) 906-12
  • 44 Kuhnke P, Kiefer M, Hartwigsen G. Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cereb Cortex 2020; 30 (07) 3938-59 DOI: 10.1093/cercor/bhaa010.
  • 45 Popp M, Trumpp NM, Sim EJ. et al Brain activation during conceptual processing of action and sound verbs. Adv Cognit Psychol 2019; 15 (04) 236-55 DOI: 10.5709/acp-0272-4.
  • 46 James TW, Gauthier I. Auditory and action semantic features activate sensory-specific perceptual brain regions. Curr Biol 2003; 13 (20) 1792-6
  • 47 Kiefer M, Sim E-J, Liebich S, Hauk O. et al Experience-dependent plasticity of conceptual representations in human sensory-motor areas. J Cognit Neurosci 2007; 19 (03) 525-42
  • 48 Soden-Fraunhofen R, Sim E-J, Liebich S. et al Die Rolle der motorischen Interaktion beim Erwerb begrifflichen Wissens: Eine Trainingsstudie mit künstlichen Objekten. Z Pädagog Psychol 2008; 22 (01) 47-58
  • 49 Hoenig K, Müller C, Herrnberger B. et al Neuroplasticity of semantic representations for musical instruments in professional musicians. NeuroImag 2011; 56 (03) 1714-25
  • 50 Beilock SL, Lyons IM, Mattarella-Micke A. et al Sports experience changes the neural processing of action language. Proc Natl Acad Sci USA 2008; 105 (36) 13269-73
  • 51 Lyons IM, Mattarella-Micke A, Cieslak M. et al The role of personal experience in the neural processing of action-related language. Brain Lang 2010; 112 (03) 214-22
  • 52 Solomon KO, Barsalou LW. Perceptual simulation in property verification. Mem Cognit 2004; 32: 244-59
  • 53 Trumpp NM, Kiefer M. Functional reorganization of the conceptual brain system after deafness in early childhood. PLoS ONE 2018; 13 (07) DOI: 10.1371/journal.pone.0198894.
  • 54 Spitzer M. Digitale Demenz. München: Droemer; 2012
  • 55 Spitzer M. Digial genial? Mit dem „Ende der Kreidezeit“ bleibt das Denken auf der Strecke. Nervenheilkunde 2015; 34 1–2 9-16
  • 56 Dove G. Beyond perceptual symbols: A call for representational pluralism. Cognition 2009; 110 (03) 412-31 DOI: 10.1016/j.cognition.2008.11.016.
  • 57 Dove G. Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychon Bull Rev 2016; 23 (04) 1109-21 DOI: 10.3758/s13423-015-0825-4.
  • 58 Mahon BZ, Caramazza A. Concepts and categories: A cognitive neuropsychological perspective. Ann Rev Psychol 2009; 60: 27-51
  • 59 Paivio A. Mental representations: A dual coding approach. New York: Oxford University Press; 1986
  • 60 Barsalou LW, Wiemer-Hastings K. Situating abstract concepts. In: Pecher D, Zwaan R, Hrsg. Grounding cognition: The role of perception and action in memory, language, and thought. New York: Cambridge University Press; 2005: 129-63
  • 61 Harpaintner M, Trumpp NM, Kiefer M. The semantic content of abstract concepts: A property listing study of 296 abstract words. Front Psychol 2018; 09: 1748 DOI: 10.3389/fpsyg.2018.01748.
  • 62 Borghi AM, Binkofski F. Words as social tools: An embodied view on abstract concepts. New York: Springer-Verlag; 2014
  • 63 Kiefer M, Pielke L, Trumpp NM. Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. NeuroImage 2022; 252: 119036 DOI: 10.1016/j.neuroimage.2022.119036.
  • 64 Kousta ST, Vigliocco G, Vinson DP. et al The representation of abstract words: Why emotion matters. J Exp Psychol Gen 2011; 140 (01) 14-34 DOI: 10.1037/a0021446.
  • 65 Borghi AM, Binkofski F, Castelfranchi C. et al The challenge of abstract concepts. Psychol Bul 2017; 143 (03) 263-92 DOI: 10.1037/bul0000089.
  • 66 Vigliocco G, Kousta ST, Della Rosa PA. et al The neural representation of abstract words: The role of emotion. Cereb Cortex 2014; 24 (07) 1767-77 DOI: 10.1093/cercor/bht025.
  • 67 Wilson-Mendenhall CD, Simmons WK, Martin A. et al Contextual processing of abstract concepts reveals neural representations of nonlinguistic semantic content. J Cognit Neurosci 2013; 25 (06) 920-35 DOI: 10.1162/jocn_a_00361.
  • 68 Harpaintner M, Sim EJ, Trumpp NM. et al The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex 2020; 124: 1-22 DOI: 10.1016/j.cortex.2019.10.014.
  • 69 Trumpp NM, Ulrich M, Kiefer M. Experiential grounding of abstract concepts: Processing of abstract mental state concepts engages brain regions involved in mentalizing, automatic speech, and lip movements. NeuroImage 2024; 288: 120539 DOI: 10.1016/j.neuroimage.2024.120539.
  • 70 Borghi AM. Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science. 2022; 31 (03) 238-46 Artn 09637214221079625
  • 71 10.1177/09637214221079625
  • 72 Borghi AM, Zarcone E. Grounding abstractness: Abstract concepts and the activation of the mouth. Front Psychol. 2016: 7 Artn 149810.3389/Fpsyg.2016.01498
  • 73 Carey S. The origin of concepts. J Cogn Dev 2000; 01 (01) 37-41 DOI: 10.1207/S15327647jcd0101n_3.
  • 74 Ulrich M, Harpaintner M, Trumpp NM. et al Academic training increases grounding of scientific concepts in experiential brain systems. Cereb Cortex 2023; 33 (09) 5646-57 DOI: 10.1093/cercor/bhac449.
  • 75 Kiefer M, Spitzer M. Kognitive Defizite schizophener Patienten. Nervenheilkunde 1999; 18: 332-7
  • 76 Spitzer M. Assoziative Netzwerke, formale Denkstörungen und Schizophrenie. Nervenarzt 1993; 64: 147-59
  • 77 Bleuler E. Dementia Praecox. 1st ed. Leipzig: Franz Deuticke; 1911
  • 78 Kiefer M, Weisbrod M, Spitzer M. Zur funktionellen Neuroanatomie und Psychopathologie des semantischen Gedächtnisses. Psychologische Rundschau 1998; 49: 132-43
  • 79 Spitzer M, Weisker I, Maier S. et al Semantic and phonological priming in schizophrenia. J Abn Psychol 1994; 103: 485-94
  • 80 Manschreck TC, Maher BA, Milavetz JJ. et al Semantic priming in thought disordered schizophrenic patients. Schizophr Res 1988; 01: 61-6
  • 81 Trumpp NM, Kliese D, Hoenig K. et al Losing the sound of concepts: Damage to auditory association cortex impairs the processing of sound-related concepts. Cortex 2013; 49: 474-86 DOI: 10.1016/j.cortex.2012.02.002.
  • 82 Dreyer FR, Frey D, Arana S. et al Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Front Psychol. 2015: 6 Artn 166110.3389/Fpsyg.2015.01661
  • 83 Boulenger V, Mechtouff L, Thobois S. et al Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 2008; 46 (02) 743-56 DOI: 10.1016/j.neuropsychologia.2007.10.007.
  • 84 Green MF, Horan WP, Lee J. Social cognition in schizophrenia. Nat Rev Neurosci 2015; 16 (10) 620-31 DOI: 10.1038/nrn4005.
  • 85 Banker SM, Gu X, Schiller D. et al Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci 2021; 44 (10) 793-807 DOI: 10.1016/j.tins.2021.08.005.
  • 86 Green MF, Horan WP, Lee J. Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry 2019; 18 (02) 146-61 DOI: 10.1002/wps.20624.