CC BY-NC-ND 4.0 · Thorac Cardiovasc Surg 2024; 72(S 03): e1-e6
DOI: 10.1055/a-2316-8828
Pediatric and Congenital Cardiology

The Ongoing Debate: Longevity of Biological Valves in Pulmonary Position

1   Bereich Kinderherzchirurgie/Chirurgie angeborener Herzfehler, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
1   Bereich Kinderherzchirurgie/Chirurgie angeborener Herzfehler, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
Miriam Mkanyika Righa
1   Bereich Kinderherzchirurgie/Chirurgie angeborener Herzfehler, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
1   Bereich Kinderherzchirurgie/Chirurgie angeborener Herzfehler, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
2   Bereich Kinderkardiologie, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
1   Bereich Kinderherzchirurgie/Chirurgie angeborener Herzfehler, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
1   Bereich Kinderherzchirurgie/Chirurgie angeborener Herzfehler, Klinik für Kinderherzmedizin und Erwachsene mit angeborenen Herzfehlern, Universitäres Herz- und Gefäßzentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations

Abstract

Background In patients with tetralogy of Fallot (ToF) or ToF-like anatomy, factors possibly impacting the longevity of biological valves in the pulmonary position were investigated.

Method Between 1997 and 2017, 79 consecutive hospital survivors with a median age of 8.7 years (range: 0.2–56.1 years; interquartile range [IQR]: 14.8 years) with ToF or ToF-like anatomy underwent surgical implantation of Contegra (n = 34), Hancock (n = 23), Perimount (n = 9), pulmonary homograft (n = 9), and miscellaneous (n = 4) conduits. The median internal graft diameter was 19 mm (range: 11–29 mm; IQR: 8 mm) which refers to a median z-score of 0.6 standard deviation (SD) (range: −1.8 to 4.0 SD; IQR: 2.1 SD).

Results The median time of follow-up was 9.4 years (range: 1.1–18.8 years; IQR: 6.0 years). Thirty-nine patients (49%) underwent surgical (n = 32) or interventional (n = 7) pulmonary valve re-replacement. Univariate Cox regression revealed patient age (p = 0.018), body surface area (p = 0.004), internal valve diameter (p = 0.005), and prosthesis z-score (p = 0.018) to impact valve longevity. Multivariate Cox regression analysis, however, did not show any significant effect (likely related to multicollinearity). Subgroup analysis showed that valve-revised patients have a higher average z-score (p = 0.003) and younger average age (p = 0.007).

Conclusion A decreased longevity of biological valves in the pulmonary position is related to younger age, lower valve diameter, and higher z-score. Because valve size (diameter and z-score) can be predicted by age, patient age is the crucial parameter influencing graft longevity.



Publication History

Received: 28 December 2023

Accepted: 25 April 2024

Accepted Manuscript online:
30 April 2024

Article published online:
04 June 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Balzer D. Pulmonary valve replacement for tetralogy of Fallot. Methodist DeBakey Cardiovasc J 2019; 15 (02) 122-132 . Erratum in: Methodist Debakey Cardiovasc J. 2019 Jul-Sep;15(3):236. PMID: 31384375; PMCID: PMC6668735
  • 2 Powell AJ, Lock JE, Keane JF, Perry SB. Prolongation of RV-PA conduit life span by percutaneous stent implantation. Intermediate-term results. Circulation 1995; 92 (11) 3282-3288
  • 3 Chen PC, Sager MS, Zurakowski D. et al. Younger age and valve oversizing are predictors of structural valve deterioration after pulmonary valve replacement in patients with tetralogy of Fallot. J Thorac Cardiovasc Surg 2012; 143 (02) 352-360
  • 4 Rahmath MRK, Boudjemline Y. Tetralogy of Fallot will be treated interventionally within two decades. Pediatr Cardiol 2020; 41 (03) 539-545
  • 5 Jones TK, McElhinney DB, Vincent JA. et al. Long-term outcomes after melody transcatheter pulmonary valve replacement in the US investigational device exemption trial. Circ Cardiovasc Interv 2022; 15 (01) e010852
  • 6 Boethig D, Avsar M, Bauer UMM. et al; National Register For Congenital Heart Defects Investigators, Evaluation of the German National Register for Congenital Heart Defects. Pulmonary valve prostheses: patient's lifetime procedure load and durability. Interact Cardiovasc Thorac Surg 2022; 34 (02) 297-306 DOI: 10.1093/icvts/ivab233.
  • 7 Bapat VN, Attia R, Thomas M. Effect of valve design on the stent internal diameter of a bioprosthetic valve: a concept of true internal diameter and its implications for the valve-in-valve procedure. JACC Cardiovasc Interv 2014; 7 (02) 115-127
  • 8 Pettersen MD, Du W, Skeens ME, Humes RA. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr 2008; 21 (08) 922-934
  • 9 Baird CW, Chávez M, Sleeper LA. et al. Reintervention rates after bioprosthetic pulmonary valve replacement in patients younger than 30 years of age: a multicenter analysis. J Thorac Cardiovasc Surg 2021; 161 (02) 345-362.e2
  • 10 Kim DH, Kwon YK, Choi ES, Kwon BS, Park CS, Yun TJ. Risk factors for early adverse outcomes after bovine jugular vein conduit implantation: influence of oversized conduit on the outcomes. Interact Cardiovasc Thorac Surg 2022; 35 (04) ivac197
  • 11 Nomoto R, Sleeper LA, Borisuk MJ. et al. Outcome and performance of bioprosthetic pulmonary valve replacement in patients with congenital heart disease. J Thorac Cardiovasc Surg 2016; 152 (05) 1333-1342.e3
  • 12 Zubairi R, Malik S, Jaquiss RD, Imamura M, Gossett J, Morrow WR. Risk factors for prosthesis failure in pulmonary valve replacement. Ann Thorac Surg 2011; 91 (02) 561-565
  • 13 Al Mosa AFH, Madathil S, Bernier PL, Tchervenkov C. Long-term outcome following pulmonary valve replacement in repaired tetralogy of Fallot. World J Pediatr Congenit Heart Surg 2021; 12 (05) 616-627
  • 14 Sarikouch S, Koerperich H, Dubowy KO. et al; German Competence Network for Congenital Heart Defects Investigators. Impact of gender and age on cardiovascular function late after repair of tetralogy of Fallot: percentiles based on cardiac magnetic resonance. Circ Cardiovasc Imaging 2011; 4 (06) 703-711