Subscribe to RSS
DOI: 10.1055/a-2343-0046
Flow Diversion for the Treatment of Middle Cerebral Artery Aneurysms
Flow Diversion zur Behandlung von Aneurysmen der A. cerebri media
Abstract
Background
The invention of flow diverting stents (FDS) is a novel milestone in the field of endovascular aneurysm therapy, promoting physiological healing of the vessel segment contrary to prior deconstructive treatment strategies, such as coiling. The effects of FDS are based on changes in flow patterns, segmental wall stabilization, and the growth of a neointima. Although flow diversion is already well established for cerebral aneurysms in proximal segments, peripheral locations remain challenging. Especially the middle cerebral artery (MCA) with its predominance of non-collateralized perforators and functional end arteries that supply the eloquent areas of the brain is of major concern.
Methods
The literature was reviewed for flow diversion of the MCA and antiplatelet therapy.
Results and Conclusion
Resulting from the special anatomical characteristics of the MCA, FDS implantation in this territory is completely different from the proximal vessel segments. Still, flow diversion represents an effective endovascular strategy, especially in otherwise non-accessible or sufficiently treatable lesions. However, the risk of ischemic adverse events might be increased. Special attention to the individual decision regarding device selection, antiplatelet regimen, and exact definition of the proximal and distal landing zone considering the jailed side branches is essential for a good angiographic and clinical outcome.
Key Points
-
MCA aneurysms can be sufficiently treated by FDS.
-
The anatomic and hemodynamic characteristics of the MCA result in an increased risk of thromboembolism.
-
Individual device selection and antiplatelet regimen are essential for treatment success.
Citation Format
-
Schüngel M, Wohlgemuth WA, Elolf E et al. Review: Flow Diversion for the Treatment of Middle Cerebral Artery Aneurysms. Rofo 2025; DOI 10.1055/a-2343-0046
Zusammenfassung
Hintergrund
Die Einführung flussmodulierender Stents ist als neuer Meilenstein für die zerebrale Aneurysmatherapie zu betrachten. Anders als beispielsweise bei der Coil-Okklusion wird über die Veränderung der lokalen Hämodynamik, die Stabilisierung der erkrankten Gefäßwand und die Bildung einer neuen Intima der Aneurysmaverschluss schrittweise erzielt. Obgleich flussmodulierende Stents bereits für die Behandlung von proximalen hirnversorgenden Gefäßabschnitten etabliert sind, stellen periphere Segmente distal des Circulus Willisii eine Herausforderung dar. Insbesondere die Arteria cerebri media, welche zahlreiche nicht kollateralisierbare Perforatoren und für eloquente Hirnareale essenzielle Endarterien trägt, nimmt in diesem Zusammenhang eine besondere Stellung ein.
Methode
Es erfolgte die Literaturrecherche zu flussmodulierenden Stents für die Aneurysmatherapie der Arteria cerebri media mit besonderem Augenmerk auf der Thrombozytenaggregationshemmung in diesem Kontext.
Ergebnisse und Schlussfolgerung
Resultierend aus den anatomischen Besonderheiten der Arteria cerebri media unterscheidet sich die Implantation hämodynamisch aktiver Implantate wesentlich vom Einsatz in weiter proximal gelegenen Gefäßsegmenten. Trotz dessen stellt diese Therapieoption einen effektiven Behandlungsansatz für anderweitig nicht oder lediglich schwer behandelbare Aneurysmen in diesem Gefäßterritorium dar. Jedoch ist das Thromboembolierisiko vergleichsweise hoch. Besonderer Beachtung bedarf die Implantatarchitektur- und Oberfläche, die notwendige Thrombozytenaggregationshemmung und die genaue Definition der proximalen und distalen Landezone mit Verweis auf überlegte Seitenäste, um ein gutes hämodynamisches Ergebnis und klinisches Outcome zu ermöglichen.
Kernaussagen
-
Aneurysmen der A. cerebri media können suffizient mittels flussmodulierender Stents behandelt werden.
-
Die anatomischen und hämodynamischen Besonderheiten der Arteria cerebri media bedingen ein erhöhtes Ischämierisiko.
-
Die sorgfältige Implantatauswahl und angepasste Thrombozytenaggregationshemmung sind wesentlich für den Behandlungserfolg.
Publication History
Received: 04 April 2024
Accepted after revision: 03 June 2024
Article published online:
08 July 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Yasargil MG, Fox JL. The microsurgical approach to intracranial aneurysms. Surg Neurol 1975; 3 (01) 7-14
- 2 Krayenbühl HA, Yaşargil MG, Flamm ES. et al. Microsurgical treatment of intracranial saccular aneurysms. J Neurosurg 1972; 37 (06) 678-686
- 3 Tremmel M, Xiang J, Natarajan SK. et al. Alteration of intra-aneurysmal hemodynamics for flow diversion using enterprise and vision stents. World Neurosurg 2010; 74: 306-315
- 4 Gyürki D, Csippa B, Paál G. et al. Impact of Design and Deployment Technique on the Hydrodynamic Resistance of Flow Diverters : An in Vitro Experimental Study. Clin Neuroradiol 2022; 32 (01) 107-115
- 5 Cagnazzo F, Cappucci M, Dargazanli C. et al. Flow-Diversion Effect of LEO Stents: Aneurysm Occlusion and Flow Remodeling of Covered Side Branches and Perforators. AJNR Am J Neuroradiol 2018; 39 (11) 2057-2063
- 6 Voigt P, Schob S, Jantschke R. et al. Stent-Assisted Coiling of Ruptured and Incidental Aneurysms of the Intracranial Circulation Using Moderately Flow-Redirecting, Braided Leo Stents-Initial Experience in 39 Patients. Front Neurol 2017; 8: 602
- 7 Kadirvel R, Ding YH, Dai D. et al. Cellular mechanisms of aneurysm occlusion after treatment with a flow diverter. Radiology 2014; 270 (02) 394-399
- 8 Kocur D, Przybyłko N, Bażowski P. et al. Rupture during coiling of intracranial aneurysms: Predictors and clinical outcome. Clin Neurol Neurosurg 2018; 165: 81-87
- 9 Maybaum J, Henkes H, Aguilar-Pérez M. et al. Flow Diversion for Reconstruction of Intradural Vertebral Artery Dissecting Aneurysms Causing Subarachnoid Hemorrhage-A Retrospective Study From Four Neurovascular Centers. Front Neurol 2021; 12: 700164
- 10 Grüter BE, Wanderer S, Strange F. et al. Patterns of Neointima Formation After Coil or Stent Treatment in a Rat Saccular Sidewall Aneurysm Model. Stroke 2021; 52 (03) 1043-1052
- 11 Lee JY, Cho YD, Kang HS. et al. Healing of Aneurysm after Treatment Using Flow Diverter Stent : Histopathological Study in Experimental Canine Carotid Side Wall Aneurysm. J Korean Neurosurg Soc 2020; 63 (01) 34-44
- 12 Cebral JR, Mut F, Weir J. et al. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 2011; 32 (02) 264-270
- 13 Lylyk P, Miranda C, Ceratto R. et al. Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery 2009; 64 (04) 632-N6
- 14 Raychev R, Sirakov S, Sirakov A. et al. Critical Angiographic and Sonographic Analysis of Intra Aneurysmal and Downstream Hemodynamic Changes After Flow Diversion. Front Neurol 2022; 13: 813101
- 15 Mut F, Raschi M, Scrivano E. et al. Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J Neurointerv Surg 2015; 7 (04) 286-290
- 16 Kulcsár Z, Augsburger L, Reymond P. et al. Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta Neurochir (Wien) 2012; 154 (10) 1827-1834
- 17 Kulcsár Z, Houdart E, Bonafé A. et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 2011; 32 (01) 20-25
- 18 Touat Z, Ollivier V, Dai J. et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am J Pathol 2006; 168 (03) 1022-1030
- 19 Tulamo R, Frösen J, Hernesniemi J. et al. Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg 2010; 2 (02) 120-130
- 20 Pitchford S, Pan D, Welch HC. Platelets in neutrophil recruitment to sites of inflammation. Curr Opin Hematol 2017; 24 (01) 23-31
- 21 Korai M, Purcell J, Kamio Y. et al. Neutrophil Extracellular Traps Promote the Development of Intracranial Aneurysm Rupture. Hypertension 2021; 77 (06) 2084-2093
- 22 Zhou Y, Tao W, Shen F. et al. The Emerging Role of Neutrophil Extracellular Traps in Arterial, Venous and Cancer-Associated Thrombosis. Front Cardiovasc Med 2021; 8: 786387
- 23 Henkes H, Bhogal P, Aguilar Pérez M. et al. Anti-thrombogenic coatings for devices in neurointerventional surgery: Case report and review of the literature. Interv Neuroradiol 2019; 25 (06) 619-627
- 24 Eker OF, Lubicz B, Cortese M. et al. Effects of the flow diversion technique on nucleotide levels in intra-cranial aneurysms: A feasibility study providing new research perspectives. Front Cardiovasc Med 2022; 9: 885426
- 25 Becske T, Kallmes DF, Saatci I. et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology 2013; 267 (03) 858-868
- 26 Oliphant CS, Trevarrow BJ, Dobesh PP. Clopidogrel Response Variability: Review of the Literature and Practical Considerations. J Pharm Pract 2016; 29 (01) 26-34
- 27 Flechtenmacher N, Kämmerer F, Dittmer R. et al. Clopidogrel Resistance in Neurovascular Stenting: Correlations between Light Transmission Aggregometry, VerifyNow, and the Multiplate. AJNR Am J Neuroradiol 2015; 36 (10) 1953-1958
- 28 Comin J, Kallmes DF. Platelet-function testing in patients undergoing neurovascular procedures: caught between a rock and a hard place. AJNR Am J Neuroradiol 2013; 34 (04) 730-734
- 29 Koshy AN, Giustino G, Sartori S. et al. Ticagrelor or prasugrel versus clopidogrel in patients undergoing percutaneous coronary intervention for chronic coronary syndromes. EuroIntervention 2023; 18 (15) 1244-1253
- 30 Kallmes DF, Brinjikji W, Boccardi E. et al. Aneurysm Study of Pipeline in an Observational Registry (ASPIRe). Interv Neurol 2016; 5: 89-99
- 31 Schob S, Brill R, Siebert E. et al. Indirect Flow Diversion for Off-Centered Bifurcation Aneurysms and Distant Small-Vessel Aneurysms, a Retrospective Proof of Concept Study From Five Neurovascular Centers. Front Neurol 2022; 12: 801470
- 32 Ravindran K, Enriquez-Marulanda A, Kan PTM. et al. Use of Flow Diversion for the Treatment of Distal Circulation Aneurysms: A Multicohort Study. World Neurosurg 2018; 118: e825-e833
- 33 Atallah E, Saad H, Mouchtouris N. et al. Pipeline for Distal Cerebral Circulation Aneurysms. Neurosurgery 2019; 85 (03) E477-E484
- 34 Dabhi N, Sarathy D, Snyder MH. et al. Flow Diverter Devices for Treatment of Intracranial Aneurysms in Small Parent Vessels-A Systematic Review of Literature. World Neurosurg 2022; 162: 183-194.e7
- 35 Schüngel MS, Hoffmann KT, Weber E. et al. Distal Flow Diversion with Anti-Thrombotically Coated and Bare Metal Low-Profile Flow Diverters-A Comparison. J Clin Med 2023; 12 (07) 2700
- 36 Schüngel MS, Quäschling U, Weber E. et al. Endovascular Treatment of Intracranial Aneurysms in Small Peripheral Vessel Segments-Efficacy and Intermediate Follow-Up Results of Flow Diversion With the Silk Vista Baby Low-Profile Flow Diverter. Front Neurol 2021; 12: 671915
- 37 Schob S, Kläver M, Richter C. et al. Single-Center Experience With the Bare p48MW Low-Profile Flow Diverter and Its Hydrophilically Covered Version for Treatment of Bifurcation Aneurysms in Distal Segments of the Anterior and Posterior Circulation. Front Neurol 2020; 11: 1050
- 38 Hohenstatt S, Vinci SL, Vollherbst DF. et al. Flow Diverting Stents in Cerebral Small Caliber Vessels (<2mm) for Aneurysm Treatment : A Three Center Retrospective Study. Clin Neuroradiol 2023; 33 (01) 99-105
- 39 den Bergh FV, De Beule T, van Rooij WJ. et al. The p48 flow diverter: First clinical results in 25 aneurysms in three centers. Interv Neuroradiol 2021; 27 (03) 339-345
- 40 Benalia VHC, Cortez GM, Brasiliense LBC. et al. Silk Vista Baby for the Treatment of Complex Posterior Inferior Cerebellar Artery Aneurysms. Neurosurgery 2022; 91 (04) 547-554
- 41 Lenz-Habijan T, Bhogal P, Peters M. et al. Hydrophilic Stent Coating Inhibits Platelet Adhesion on Stent Surfaces: Initial Results In Vitro. Cardiovasc Intervent Radiol 2018; 41 (11) 1779-1785
- 42 Goertz L, Schoenfeld M, Zopfs D. et al. The DERIVO 2heal embolisation device: A technical report using single antiplatelet therapy for intracranial pseudoaneurysm treatment. Interv Neuroradiol 2022;
- 43 Mühl-Benninghaus R, Fries F, Kießling M. et al. Vascular Response on a Novel Fibrin-Based Coated Flow Diverter. Cardiovasc Intervent Radiol 2022; 45 (02) 236-243
- 44 Manning NW, Cheung A, Phillips TJ. et al. Pipeline shield with single antiplatelet therapy in aneurysmal subarachnoid haemorrhage: multicentre experience. J Neurointerv Surg 2019; 11 (07) 694-698
- 45 Hellstern V, Aguilar Pérez M, Henkes E. et al. Use of a p64 MW Flow Diverter with Hydrophilic Polymer Coating (HPC) and Prasugrel Single Antiplatelet Therapy for the Treatment of Unruptured Anterior Circulation Aneurysms: Safety Data and Short-term Occlusion Rates. Cardiovasc Intervent Radiol 2022; 45 (09) 1364-1374
- 46 de Castro-Afonso LH, Nakiri GS, Abud TG. et al. Aspirin monotherapy in the treatment of distal intracranial aneurysms with a surface modified flow diverter: a pilot study. J Neurointerv Surg 2021; 13 (04) 336-341
- 47 Madjidyar J, Keller E, Winklhofer S. et al. Single-antiplatelet regimen in ruptured cerebral blood blister and dissecting aneurysms treated with flow-diverter stent reconstruction. J Neurointerv Surg 2023; 15 (10) 953-957
- 48 Aguilar-Perez M, Hellstern V, AlMatter M. et al. The p48 Flow Modulation Device with Hydrophilic Polymer Coating (HPC) for the Treatment of Acutely Ruptured Aneurysms: Early Clinical Experience Using Single Antiplatelet Therapy. Cardiovasc Intervent Radiol 2020; 43 (05) 740-748
- 49 Khanafer A, Cimpoca A, Bhogal P. et al. Low incidence of hemorrhagic complications both during and after surgical procedures in patients maintained on prasugrel single antiplatelet therapy. J Neuroradiol 2023; 50 (01) 65-73
- 50 Saver JL, Chapot R, Agid R. et al. Thrombectomy for Distal, Medium Vessel Occlusions: A Consensus Statement on Present Knowledge and Promising Directions. Stroke 2020; 51 (09) 2872-2884
- 51 Charbonnier G, Desilles JP, Escalard S. et al. Timing and Spectrum of Neurological Complications After Flow Diverter Implantation for Intracranial Aneurysms. Front Neurol 2021; 12: 590383
- 52 Schob S, Richter C, Scherlach C. et al. Delayed Stroke after Aneurysm Treatment with Flow Diverters in Small Cerebral Vessels: A Potentially Critical Complication Caused by Subacute Vasospasm. J Clin Med 2019; 8 (10) 1649
- 53 Guédon A, Clarençon F, Di Maria F. et al. Very late ischemic complications in flow-diverter stents: a retrospective analysis of a single-center series. J Neurosurg 2016; 125 (04) 929-935
- 54 Gibo H, Carver CC, Rhoton Jr AL. et al. Microsurgical anatomy of the middle cerebral artery. J Neurosurg 1981; 54 (02) 151-169
- 55 Shapiro M, Raz E, Nossek E. et al. Neuroanatomy of the middle cerebral artery: implications for thrombectomy. J Neurointerv Surg 2020; 12 (08) 768-773
- 56 Kaspera W, Ćmiel-Smorzyk K, Wolański W. et al. Morphological and Hemodynamic Risk Factors for Middle Cerebral Artery Aneurysm: a Case-Control Study of 190 Patients. Sci Rep 2020; 10 (01) 2016
- 57 Gao BL, Hao H, Hao W. et al. Cerebral aneurysms at major arterial bifurcations are associated with the arterial branch forming a smaller angle with the parent artery. Sci Rep 2022; 12 (01) 5106
- 58 Zhang XJ, Hao WL, Zhang DH. et al. Asymmetrical middle cerebral artery bifurcations are more vulnerable to aneurysm formation. Sci Rep 2019; 9 (01) 15255
- 59 Zhang W, Wang J, Li T. et al. Morphological parameters of middle cerebral arteries associated with aneurysm formation. Neuroradiology 2021; 63 (02) 179-188
- 60 Zanaty M, Chalouhi N, Tjoumakaris SI. et al. Flow diversion for complex middle cerebral artery aneurysms. Neuroradiology 2014; 56 (05) 381-387
- 61 Zaidat OO, Castonguay AC, Teleb MS. et al. Middle cerebral artery aneurysm endovascular and surgical therapies: comprehensive literature review and local experience. Neurosurg Clin N Am 2014; 25 (03) 455-469
- 62 Elsharkawy A, Lehečka M, Niemelä M. et al. A new, more accurate classification of middle cerebral artery aneurysms: computed tomography angiographic study of 1,009 consecutive cases with 1,309 middle cerebral artery aneurysms. Neurosurgery 2013; 73 (01) 94-102
- 63 Rinne J, Hernesniemi J, Niskanen M. et al. Analysis of 561 patients with 690 middle cerebral artery aneurysms: anatomic and clinical features as correlated to management outcome. Neurosurgery 1996; 38 (01) 2-11
- 64 Mortimer AM, Bradley MD, Mews P. et al. Endovascular treatment of 300 consecutive middle cerebral artery aneurysms: clinical and radiologic outcomes. AJNR Am J Neuroradiol 2014; 35 (04) 706-714
- 65 Bracard S, Abdel-Kerim A, Thuillier L. et al. Endovascular coil occlusion of 152 middle cerebral artery aneurysms: initial and midterm angiographic and clinical results. J Neurosurg 2010; 112 (04) 703-708
- 66 Jin SC, Kwon OK, Oh CW. et al. Simple coiling using single or multiple catheters without balloons or stents in middle cerebral artery bifurcation aneurysms. Neuroradiology 2013; 55 (03) 321-326
- 67 Lubicz B, Pezzullo M, Brisbois D. et al. Endovascular treatment of proximal superior middle cerebral artery aneurysms. Neuroradiology 2012; 54 (11) 1267-1273
- 68 Kallmes DF, Ding YH, Dai D. et al. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 2007; 38 (08) 2346-2352
- 69 Dai D, Ding YH, Kadirvel R. et al. Patency of branches after coverage with multiple telescoping flow-diverter devices: an in vivo study in rabbits. AJNR Am J Neuroradiol 2012; 33 (01) 171-174
- 70 Topcuoglu OM, Akgul E, Daglioglu E. et al. Flow Diversion in Middle Cerebral Artery Aneurysms: Is It Really an All-Purpose Treatment?. World Neurosurg 2016; 87: 317-327
- 71 Raymond J, Darsaut TE, Makoyeva A. et al. Endovascular treatment with flow diverters may fail to occlude experimental bifurcation aneurysms. Neuroradiology 2013; 55 (11) 1355-1363
- 72 Saleme S, Iosif C, Ponomarjova S. et al. Flow-diverting stents for intracranial bifurcation aneurysm treatment. Neurosurgery 2014; 75 (06) 623-631
- 73 Alderazi YJ, Shastri D, Kass-Hout T. et al. Flow diverters for intracranial aneurysms. Stroke Res Treat 2014; 2014: 415653
- 74 Bhogal P, AlMatter M, Bäzner H. et al. Flow Diversion for the Treatment of MCA Bifurcation Aneurysms-A Single Centre Experience. Front Neurol 2017; 8: 20
- 75 Yavuz K, Geyik S, Saatci I. et al. Endovascular treatment of middle cerebral artery aneurysms with flow modification with the use of the pipeline embolization device. AJNR Am J Neuroradiol 2014; 35 (03) 529-535
- 76 Diestro JDB, Adeeb N, Dibas M. et al. Flow Diversion for Middle Cerebral Artery Aneurysms: An International Cohort Study. Neurosurgery 2021; 89 (06) 1112-1121
- 77 Caroff J, Neki H, Mihalea C. et al. Flow-Diverter Stents for the Treatment of Saccular Middle Cerebral Artery Bifurcation Aneurysms. AJNR Am J Neuroradiol 2016; 37 (02) 279-284
- 78 Jover E, Rodríguez JM, Bernal A. et al. High on-treatment platelet reactivity in patients with ischemic cerebrovascular disease: assessment of prevalence and stability over time using four platelet function tests. Blood Coagul Fibrinolysis 2014; 25 (06) 604-611
- 79 Richter C, Hoffmann KT, Köhlert K. et al. Vertebral Artery Aneurysm: Stent-Assisted Coil Occlusion, Early Reperfusion, ASA/Metamizol Interaction with Poorly Controlled Platelet Function Inhibition, p64 Implantation, Aneurysm Reperfusion and Thrombus-Related Inflammation, Telescoping PED Implantation and Anti-Inflammatory Medication, Angiographic Exclusion of the Aneurysm, Regression of the Inflammation and Good Clinical Outcome. In: Henkes H, Lylyk P, Ganslandt O. , ed. The Aneurysm Casebook. Springer, Cham; 2020.
- 80 Briganti F, Delehaye L, Leone G. et al. Flow diverter device for the treatment of small middle cerebral artery aneurysms. J Neurointerv Surg 2016; 8 (03) 287-294
- 81 Cagnazzo F, Mantilla D, Lefevre PH. et al. Treatment of Middle Cerebral Artery Aneurysms with Flow-Diverter Stents: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2017; 38 (12) 2289-2294
- 82 Campo G, Parrinello G, Ferraresi P. et al. Prospective evaluation of on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention relationship with gene polymorphisms and clinical outcome. J Am Coll Cardiol 2011; 57 (25) 2474-2483
- 83 Siasos G, Oikonomou E, Zaromitidou M. et al. Clopidogrel response variability is associated with endothelial dysfunction in coronary artery disease patients receiving dual antiplatelet therapy. Atherosclerosis 2015; 242 (01) 102-108
- 84 Lenz-Habijan T, Brodde M, Kehrel BE. et al. Comparison of the Thrombogenicity of a Bare and Antithrombogenic Coated Flow Diverter in an In Vitro Flow Model. Cardiovasc Intervent Radiol 2020; 43 (01) 140-146
- 85 Girbas MG, Riedel T, Riedelová Z. et al. Comparison of the hemocompatibility of neurovascular flow diverters with anti-thrombogenic coatings. Journal of Science: Advanced Materials and Devices 2024; 9 (01)