Subscribe to RSS
DOI: 10.1055/a-2353-0356
Ökopharmakovigilanz
Aktueller Stand und Herausforderungen für die ZukunftEcopharmacovigilanceCurrent status and future challengesZUSAMMENFASSUNG
Gegenstand und Ziel Der vorliegende Artikel verdeutlicht die Relevanz von Ökopharmakovigilanz für Gesundheitsberufe und die pharmazeutische Industrie, insbesondere im Kontext der Psychopharmakotherapie. Es wird das Vorkommen und der Einfluss pharmazeutischer Rückstände auf die Umwelt diskutiert sowie aktuelle Herausforderungen und potenzielle Lösungsansätze erörtert.
Material und Methoden Die Erstellung dieser narrativen Übersicht basiert auf einer umfangreichen Literatursuche in der bibliografischen Datenbank MEDLINE.
Ergebnisse Das Ausmaß der Belastung der Umwelt, insbesondere von Gewässern durch pharmazeutische Rückstände ist alarmierend und die genauen Auswirkungen sind unzureichend erforscht. Aufgrund der hohen Verordnungszahlen und der langwierigen biologischen Abbaubarkeit in Kombination mit ihrem Einfluss auf das Monoaminsystem sind Psychopharmaka diesbezüglich problematisch. Es konnte nachgewiesen werden, dass Psychopharmaka in Gewässern und deren Lebewesen vorkommen und Verhaltensänderungen verursachen können. Die Auswirkungen polypharmazeutischer Verschmutzungen sind noch unklar. In Reaktion auf die dargelegten Problematiken wurden unter anderem auf europäischer Ebene erste Lösungsansätze eingeführt, deren Umsetzung und Auswirkungen jedoch zunächst abgewartet werden müssen.
Schlussfolgerungen und klinische Relevanz Die Berücksichtigung von Aspekten der Ökopharmakovigilanz bei der Verordnung von Medikamenten sollte auch in der Versorgungspraxis eine größere Rolle spielen. Es ist zum Beispiel von großer Bedeutung, Patienten über die sachgemäße Entsorgung von Arzneimittelresten zu informieren, um Umweltbelastungen zu minimieren. Weitere Studien sind erforderlich, um die Auswirkungen von Medikamentenrückständen auf die Umwelt und die Gesundheit von Mensch und Tier besser zu verstehen.
ABSTRACT
Objective This article highlights the relevance of ecopharmacovigilance for healthcare professionals and the pharmaceutical industry, particularly in the context of psychopharmacotherapy. It discusses the occurrence and impact of pharmaceutical residues on the environment, as well as current challenges and potential solutions.
Material and methods This narrative overview was compiled based on an extensive literature search in the MEDLINE bibliographic database.
Results The extent of environmental pollution, especially of water bodies by pharmaceutical residues, is already alarming, and the exact effects are still insufficiently researched. Due to high prescription rates and their prolonged biological persistence combined with their impact on the monoamine system, psychopharmaceuticals are particularly problematic. It has been proven that psychopharmaceuticals are present in water bodies and their organisms, causing behavioral changes. The effects of polypharmaceutical pollution are still unclear. In response to the presented problems, initial solutions have been introduced at the European level, but their implementation and impacts remain to be seen.
Conclusion Considering ecopharmacovigilance aspects in medication prescription should play a larger role in clinical practice. It is crucial, for example, to inform patients about the proper disposal of medication residues to minimize environmental impact. Further studies are required to better understand the effects of pharmaceutical residues on the environment and the health of humans and animals.
Schlüsselwörter
Ökopharmakovigilanz - Umweltnebenwirkungen - Nachhaltigkeit - Arzneimittelsicherheit - PharmakovigilanzKey words
Ecopharmacovigilance - environmental side effects - sustainability - drug safety - pharmacovigilancePublication History
Article published online:
27 August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Adeel M, Song X, Wang Y. et al Environmental impact of estrogens on human, animal and plant life: A critical review. Environ Int 2017; 99: 107-119
- 2 Assress HA, Nyoni H, Mamba BB. et al Occurrence and risk assessment of azole antifungal drugs in water and wastewater. Ecotoxicol Environ Saf 2020; 187: 109868
- 3 Bashaar M, Thawani V, Hassali MA. et al Disposal practices of unused and expired pharmaceuticals among general public in Kabul. BMC Public Health 2017; 17: 45
- 4 Brodin T, Fick J, Jonsson M. et al Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 2013; 339: 814-815
- 5 Calisto V, Esteves VI. Psychiatric pharmaceuticals in the environment. Chemosphere 2009; 77: 1257-1274
- 6 Committee for Medicinal Products for Human Use (CHMP) Guideline on the environmental risk assessment of medicinal products for human use. Eur Med Agency 2006; 44: 1-48
- 7 Dzieweczynski TL, Campbell BA, Kane JL. Dose-dependent fluoxetine effects on boldness in male Siamese fighting fish. J Exp Biol 2016; 219: 797-804
- 8 European Parliament. New EU rules to improve urban wastewater treatment and reuse. https://www.europarl.europa.eu/news/en/press-room/20240408IPR20307/new-eu-rules-to-improve-urban-wastewater-treatment-and-reuse Stand: 26.6.2024
- 9 European Parliament. Deal on more efficient treatment and reuse of urban wastewater. https://www.europarl.europa.eu/news/en/press-room/20240129IPR17203/deal-on-more-efficient-treatment-and-reuse-of-urban-wastewater stand: 26.6.2024
- 10 Grzesiuk M, Pawelec A. Fluoxetine results in misleading conclusions on fish behavior. Ecol Evol 2021; 11: 9707-9714
- 11 Hay-Schmidt A. The evolution of the serotonergic nervous system. Proc R Soc B Biol Sci 2000; 267: 1071-1079
- 12 Hiemke C, Härtter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85: 11-28
- 13 Insani WN, Qonita NA, Jannah SS. et al Improper disposal practice of unused and expired pharmaceutical products in Indonesian households. Heliyon 2020; 06: e04551
- 14 International Society of Pharmacovigilance: Ecopharmacovigilance The ISoP Special Interest Group on Ecopharmacovigilance “Safer environment for a healthier tomorrow”. https://isoponline.org/special-interest-groups/ecopharmacovigilance-group Stand: 26.6.2024
- 15 Jose J, Sandra Pinto J, Kotian B. et al Comparison of the regulatory outline of ecopharmacovigilance of pharmaceuticals in Europe, USA, Japan and Australia. Sci Total Environ 2020; 709: 134815
- 16 Kamika I, Azizi S, Muleja AA. et al The occurrence of opioid compounds in wastewater treatment plants and their receiving water bodies in Gauteng province, South Africa. Environ Pollut 2021; 290: 118048
- 17 Kellner M, Olsén KH. Divergent Response to the SSRI Citalopram in Male and Female Three-Spine Sticklebacks (Gasterosteus aculeatus). Arch Environ Contam Toxicol 2020; 79: 478-487
- 18 Kidd KA, Blanchfield PJ, Mills KH. et al Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 2007; 104: 8897-8901
- 19 Klaminder J, Brodin T, Sundelin A. et al Long-Term Persistence of an Anxiolytic Drug (Oxazepam) in a Large Freshwater Lake. Environ Sci Technol 2015; 49: 10406-10412
- 20 Köksoy S. Unused, expired pharmaceuticals and their disposal practices among the general public in Burdur-Türkiye: a cross-sectional study. BMC Public Health 2024; 24: 1303
- 21 Kuspis DA, Krenzelok EP. What happens to expired medications? A survey of community medication disposal. Vet Hum Toxicol 1996; 38: 48-49
- 22 Lertxundi U, Hernández R, Medrano J. et al Drug pollution and pharmacotherapy in psychiatry: A “platypus” in the room. Eur Psychiatry 2020; 63: e33
- 23 Lienert J, Güdel K, Escher BI. Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 2007; 41: 4471-4478
- 24 Lin AY-C, Wang X-H, Lin C-F. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 2010; 81: 562-570
- 25 Ludwig WD, Mühlbauer B, Seifert R.. Arzneiverordnungs-Report. 2022 DOI: 10.1007/978-3-662-66303-5_41
- 26 Meador JP, Yeh A, Young G. et al Contaminants of emerging concern in a large temperate estuary. Environ Pollut 2016; 213: 254-267
- 27 Morando MB, Medeiros LR, McDonald MD. Fluoxetine treatment affects nitrogen waste excretion and osmoregulation in a marine teleost fish. Aquat Toxicol 2009; 93: 253-260
- 28 Nassour C, Barton SJ, Nabhani-Gebara S. et al Occurrence of anticancer drugs in the aquatic environment: a systematic review. Environ Sci Pollut Res Int 2020; 27: 1339-1347
- 29 Polianciuc SI, Gurzău AE, Kiss B. et al Antibiotics in the environment: causes and consequences. Med Pharm reports 2020; 93: 231-240
- 30 Richmond EK, Rosi EJ, Walters DM. et al A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat Commun 2018; 09: 4491
- 31 Sacher F, Lange FT, Brauch HJ. et al Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatog A 2001; 938: 199-210
- 32 Samal K, Mahapatra S, Hibzur Ali M. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 2022; 06: 100076
- 33 Sangkuhl K, Stingl JC, Turpeinen M. et al PharmGKB summary: venlafaxine pathway. Pharmacogenet Genomics 2014; 24: 62-72
- 34 Schlüsener MP, Hardenbicker P, Nilson E. et al Occurrence of venlafaxine, other antidepressants and selected metabolites in the Rhine catchment in the face of climate change. Environ Pollut 2015; 196: 247-256
- 35 Stumm-Zollinger E, Fair GM. Biodegradation of steroid hormones. J. Water Pollut Control Fed 1965; 37: 1506-1510
- 36 Tasho RP, Cho JY. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci Total Environ. 2016 563ȃ564 366-376
- 37 Ternes TA. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC 2001; 20: 419-434
- 38 The United Nations Environment Programme: Environmentally Persistent Pharmaceutical Pollutants (EPPPs). https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/environmentally-persistent Stand: 26.6.2024
- 39 Thrupp TJ, Runnalls TJ, Scholze M. et al The consequences of exposure to mixtures of chemicals: Something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones. Sci Total Environ. 2018 619ȃ620 1482-1492
- 40 Vuori E, Happonen M, Gergov M. et al Wastewater analysis reveals regional variability in exposure to abused drugs and opioids in Finland. Sci Total Environ 2014; 487: 688-695
- 41 World Health Organization: The Importance of Pharmacovigilance. Genf; 2002
- 42 Wroński M, Trawiński J, Skibiński R. Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges. J Hazard Mater 2024; 465: 133167
- 43 Yamamoto K, Vernier P. The evolution of dopamine systems in chordates. Front Neuroanat 2011; 05: 1