RSS-Feed abonnieren
DOI: 10.1055/a-2355-6493
Stellenwert der CT und MRT bei der Perfusions- und Vitalitätsdiagnostik der koronaren Herzkrankheit, und bei der Diagnostik der kardialen Sarkoidose und Amyloidose in Relation zur Nuklearmedizin
Value of CT and MRI in diagnosing perfusion and viability in coronary artery disease, and diagnosing cardiac sarcoidosis and amyloidosis in relation to nuclear medicineAutoren
Zusammenfassung
Nuklearmedizin und Radiologie ergänzen sich bei der Diagnostik zahlreicher Erkrankungen mit unterschiedlichen Sensitivitäten und Spezifitäten, sodass aus der Zusammenschau der Ergebnisse eine Diagnose auch ohne invasive Verfahren mit hoher Wahrscheinlichkeit gestellt werden kann. Während die Computertomografie (CT) morphologische und kontrastmitteldynamische Parameter zur Verfügung hat, kann die Magnetresonanztomografie (MRT) zusätzlich funktionelle, flussdynamische und mikrostrukturelle Daten generieren. Drei Krankheitsbilder sind besonders geeignet, um diese radiologisch diagnostischen Eigenschaften im Kontext mit nuklearmedizinischen Verfahren darzustellen. Die myokardiale Perfusion und Vitalität lassen sich v.a. mittels MRT plakativ mit hoher Präzision erfassen. Die Diagnose der myokardialen Sarkoidose, oft als Chamäleon im Erscheinungsbild bezeichnet, wiederum verlangt ein Zusammenspiel mehrerer diagnostischer Techniken, um eine definitive Diagnose zu stellen. Die kardiale Amyloidose ist noch komplexer, da hereditäre und erworbene Formen unterschiedliche diagnostische Pfade abverlangen. Die kardiale MRT hat dabei das Potenzial, die Erkrankung einerseits zu diagnostizieren und andererseits unter Therapie den Verlauf zu beobachten. Ziel der Publikation ist es, bei genannten Erkrankungen das Potenzial der CT und MRT kurz und prägnant darzustellen.
Abstract
Nuclear medicine and radiology complement each other in the diagnosis of numerous diseases, with varying sensitivities and specificities, so that a diagnosis can be made with high probability from the aggregation of results even without invasive procedures. While computed tomography (CT) provides morphological and contrast agent dynamic parameters, magnetic resonance imaging (MRI) can additionally generate functional, flow dynamic, and microstructural data. Three disease entities are particularly suitable for illustrating these radiologically diagnostic properties in conjunction with nuclear medicine procedures. Myocardial perfusion and vitality can be particularly documented with high precision using MRI. The diagnosis of myocardial sarcoidosis, often referred to as a chameleon in appearance, requires an interplay of several diagnostic techniques to establish a definitive diagnosis. Cardiac amyloidosis is even more complex, as hereditary and acquired forms require different diagnostic pathways. Cardiac MRI has the potential to diagnose the disease on one hand and to monitor the course during therapy on the other. The aim of the publication is to briefly and concisely present the potential of CT and MRI in the mentioned diseases.
Publikationsverlauf
Artikel online veröffentlicht:
08. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Ter-Pegossian MM, Phelps ME, Hoffman EJ. et al. Positron-Emission Transaxial Tomograph for Nuclear Imaging (PETT). Radiology 1975; 114: 89-98
- 2 Hergan K. Vortrag: Kardiovaskuläre Radiologie: Was hat sich in den letzten 25 Jahren getan. Bildgebung mit Herz (06.10.2024 Salzburg). 2024
- 3 Mensah GA, Fuster V, Murray CJL. et al. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. Journal of the American College of Cardiology 2023; 82: 2350-2473
- 4 Statistik Austria. Todesursachen. 2025 Zugriff am 25. Juni 2025 unter: https://www.statistik.at/statistiken/bevoelkerung-und-soziales/bevoelkerung/gestorbene/todesursachen
- 5 GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet (London, England) 2024; 403: 2133-2161
- 6 Jensen RV, Hjortbak MV, Bøtker HE. Ischemic Heart Disease: An Update. Seminars in nuclear medicine 2020; 50: 195-207
- 7 Hansen B, Holtzman JN, Juszczynski C. et al. Ischemia with No Obstructive Arteries (INOCA): A Review of the Prevalence, Diagnosis and Management. Current problems in cardiology 2023; 48: 101420
- 8 Thygesen K, Alpert JS, Jaffe AS. et al. Fourth Universal Definition of Myocardial Infarction. Journal of the American College of Cardiology 2018; 72: 2231-2264
- 9 Page BJ, Banas MD, Suzuki G. et al. Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. Journal of the American College of Cardiology 2015; 65: 684-697
- 10 Lawton JS, Tamis-Holland JE, Bangalore S.. et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145: e4-e17
- 11 Kloner RA. Stunned and Hibernating Myocardium: Where Are We Nearly 4 Decades Later?. Journal of the American Heart Association 2020; 9: e015502
- 12 Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Chronische KHK, Langfassung, Version 7.0 (2024). Zugriff am 25. Juni 2025 unter: https://register.awmf.org/de/leitlinien/detail/nvl-004
- 13 Lu M, Wang S., Sirajuddin A. et al. Dynamic stress computed tomography myocardial perfusion for detecting myocardial ischemia: a systematic review and meta-analysis. Int J Cardiol 2018; 258: 325-331
- 14 Celeng C, Leiner T, Maurovich-Horvat P. et al. Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis. JACC Cardiovasc Imaging 2019; 12: 1316-1325
- 15 Sliwicka O, Sechopoulos I, Baggiano A. et al. Dynamic myocardial CT perfusion imaging-state of the art. European radiology 2023; 33: 5509-5525
- 16 Chang A, Kang N, Chung J. et al. Evaluation of Ischemia with No Obstructive Coronary Arteries (INOCA) and Contemporary Applications of Cardiac Magnetic Resonance (CMR). Medicina (Kaunas, Lithuania) 2023; 59: 1570
- 17 Reynolds HR, Smilowitz NR. Ischaemia with non-obstructive coronary arteries in the 2024 European Society of Cardiology guidelines for the management of chronic coronary syndromes. European heart journal. Acute cardiovascular care 2025; 14: 173-177
- 18 Al-Sabeq B, Nabi F, Shah DJ. Assessment of myocardial viability by cardiac MRI. Current opinion in cardiology 2019; 34: 502-509
- 19 Tore D, Faletti R, Palmisano A. et al. Cardiac computed tomography with late contrast enhancement: A review. Heliyon 2024; 10: e32436
- 20 Oyama-Manabe N, Oda S, Ohta Y. et al. Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. Journal of cardiovascular computed tomography 2024; 18: 3-10
- 21 Meier C, Eisenblätter M, Gielen S. Myocardial Late Gadolinium Enhancement (LGE) in Cardiac Magnetic Resonance Imaging (CMR)-An Important Risk Marker for Cardiac Disease. Journal of cardiovascular development and disease 2024; 11: 40
- 22 Bergamaschi L, Pavon AG, Angeli F. et al. The Role of Non-Invasive Multimodality Imaging in Chronic Coronary Syndrome: Anatomical and Functional Pathways. Diagnostics (Basel, Switzerland) 2023; 13: 2083
- 23 Wu KC. CMR of microvascular obstruction and hemorrhage in myocardial infarction. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance 2012; 14: 68
- 24 Kouranos V, Sharma R. Cardiac sarcoidosis: state-of-the-art review. Heart 2021; 107: 1591-1599
- 25 Stevenson A, Bray JJH, Tregidgo L. et al. Prognostic Value of Late Gadolinium Enhancement Detected on Cardiac Magnetic Resonance in Cardiac Sarcoidosis. J Am Coll Cardiol Img 2023; 16: 345-357
- 26 Slart RHJA, Glaudemans AWJM, Lancellotti P. et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the EuropeanAssociation of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. European Heart Journal- Cardiovascular Imaging 2017; 18: 1073-1089
- 27 Kim SJ, Ann SH, Park S. Left Ventricular Apical Aneurysm: Atypical Feature of Cardiac Sarcoidosis Diagnosed by Multimodality Imaging. Korean Circ J 2022; 52: 169-171
- 28 Shah R, Nucifora G, Perry R. et al. Noninvasive Imaging in Cardiac Deposition Diseases. J. Magn Reson Imaging 2018; 47: 44-59
- 29 Maggialetti N, Torrente A, Lorusso G. et al. Role of Cardiovascular Magnetic Resonance in Cardiac Amyloidosis: A Narrative Review. J. Pers. Med 2024; 14: 407-422
- 30 Alwan L, Benz DC, Cuddy SAM. et al. Current and Evolving Multimodality Cardiac Imaging in Managing Transthyretin Amyloid Cardiomyopathy. J Am Coll Cardiol Img 2024; 17: 195-211
- 31 Khor JM, Cuddy S, Falk R. et al. Multimodality Imaging in the Evaluation and Management of Cardiac Amyloidosis. Semin Nucl Med 2020; 50: 295-310
- 32 Martinez-Naharro A, Treibel TA, Abdel-Gadir A. et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J Am Coll Cardiol 2017; 70: 466-77
- 33 Schelbert EB, Butler J, Diez J. Why Clinicians Should Care About the Cardiac Interstitium. J Am Coll Cardiol Img 2019; 12: 2305-18
- 34 Bonderman D, Pölzl G, Ablasser K. et al. Diagnosis and treatment of cardiac amyloidosis: an interdisciplinary consensus statement. Wien Klin Wochenschr 2020; 132: 742-761
- 35 Granitz M, Motloch LJ, Granitz C. et al. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers. Reference values and clinical implications. Wien Klin Wochenschr 2018; 130: 427-435
