Subscribe to RSS
DOI: 10.1055/a-2410-5830
Rare Diseases and Syndromes Observed in Newborn Babies with Idiopathic Hypertrophic Pyloric Stenosis

Abstract
Aim Although infantile hypertrophic pyloric stenosis is a multifactorial disease caused by genetic and environmental factors, the role of genetic factors has become more important recently. With this study, we aimed to present rare diseases accompanying infantile hypertrophic pyloric stenosis caused by genetic factors.
Patients and Methods This is a retrospective study. Babies who were operated on with the diagnosis of infantile hypertrophic pyloric stenosis in the neonatal intensive care unit between 2000 and 2022 and had additional diseases were included in the study.
Results 9.8% of patients diagnosed with infantile hypertrophic pyloric stenosis had an accompanying rare disease.
Conclusion Early diagnosis and treatment of rare diseases associated with infantile hypertrophic pyloric stenosis are of great importance in reducing morbidity/mortality due to these diseases.
Publication History
Received: 22 April 2024
Accepted after revision: 16 August 2024
Article published online:
09 October 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Garfield K, Sergent SR. Pyloric Stenosis 2023 Jan 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
- 2 Oetzmann von Sochaczewski C, Muensterer OJ. The incidence of infantile hypertrophic pyloric stenosis nearly halved from 2005 to 2017: analysis of German administrative data. Pediatr Surg Int 2021; 37: 579-585
- 3 Galea R, Said E. Infantile hypertrophic pyloric stenosis: An epidemiological review. Neonatal Netw 2018; 37: 197-204
- 4 Krogh C, Fischer TK, Skotte L. et al. Familial aggregation and heritability of pyloric stenosis. JAMA 2010; 303: 2393-2399
- 5 Peeters B, Benninga MA, Hennekam RC. Infantile hypertrophic pyloric stenosis – genetics and syndromes. Nat Rev Gastroenterol Hepatol 2012; 9: 646-660
- 6 Yang J, Weedon MN, Purcell S. et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet 2011; 19: 807-812
- 7 Chung E. Infantile hypertrophic pyloric stenosis: genes and environment. Arch Dis Child 2008; 93: 1003-1004
- 8 Feenstra B, Gørtz S, Lund M. et al. Co-occurrence of infantile hypertrophic pyloric stenosis and congenital heart defects: a nationwide cohort study. Pediatr Res 2019; 85: 955-960
- 9 Schierz IA, Pinello G, Giuffrè M. et al. Congenital heart defects in newborns with apparently isolated single gastrointestinal malformation: A retrospective study. Early Hum Dev 2016; 103: 43-47
- 10 Wojtalik M, Mrowczynski W, Henschke J. et al. Congenital heart defect with associated malformations in children. J Pediatr Surg 2005; 40: 1675-1680
- 11 Güney LH, Araz C, Beyazpınar DS. et al. Abdominal problems in children with congenital cardiovascular abnormalities. Balkan Med J 2015; 32: 285-290
- 12 Rosa RC, Rosa RF, Zen PR. et al. Congenital heart defects and extracardiac malformations. Rev Paul Pediatr 2013; 31: 243-251
- 13 Gonzalez JH, Shirali GS, Atz AM. et al. Universal screening for extracardiac abnormalities in neonates with congenital heart disease. Pediatr Cardiol 2009; 30: 269-273
- 14 Örün UA, Bilici M, Demirçeken FG. et al. Gastrointestinal system malformations in children are associated with congenital heart defects. Anadolu Kardiyol Derg 2011; 1: 146-149
- 15 Chéhab G, Fakhoury H, Saliba Z. et al. Congenital heart disease associated with gastrointestinal malformations. J Med Liban 2007; 55: 70-74
- 16 Gokhroo RK, Gupta S, Arora G. et al. Prevalence of congenital heart disease in patients undergoing surgery for major gastrointestinal malformations: an Indian study. Heart Asia 2015; 7: 29-31
- 17 Hanauer DA, Rhodes DR, Chinnaiyan AM. Exploring clinical associations using “-omics” based enrichment analyses. PLoS One 2009; 4: e5203
- 18 Reamon-Buettner SM, Borlak J. NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum Mutat 2010; 31: 1185-1194
- 19 Stankiewicz P, Sen P, Bhatt SS. et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 2009; 84: 780-791
- 20 Everett KV, Ataliotis P, Chioza BA. et al. A novel missense mutation in the transcription factor FOXF1 cosegregating with infantile hypertrophic pyloric stenosis in the extended pedigree linked to IHPS5 on chromosome 16q24. Pediatr Res 2017; 81: 632-638
- 21 Cuneo BF. Outcome of fetal cardiac defects. Curr Opin Pediatr 2006; 18: 490-496
- 22 Sivanandam S, Glickstein JS, Printz BF. et al. Prenatal diagnosis of conotruncal malformations: diagnostic accuracy, outcome, chromosomal abnormalities, and extracardiac anomalies. Am J Perinatol 2006; 23: 241-245
- 23 Wernovsky G, Shillingford AJ, Gaynor JW. Central nervous system outcomes in children with complex congenital heart disease. Curr Opin Cardiol 2005; 20: 94-99
- 24 Tennakoon J, Koh TH, Alcock G. Pyloric stenosis in a newborn baby with polycystic kidneys. J Perinatol 2007; 27: 125-126
- 25 Mishra K, Batra VV, Basu S. et al. Steroid-resistant nephrotic syndrome associated with steroid sulfatase deficiency-x-linked recessive ichthyosis: a case report and review of literature. Eur J Pediatr 2012; 171: 847-850
- 26 Shapiro AJ, Davis SD, Ferkol T. et al. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 2014; 146: 1176-1186
- 27 Lee SE, Kim HY, Jung SE. et al. Situs anomalies and gastrointestinal abnormalities. J Pediatr Surg 2006; 41: 1237-1242
- 28 Gupta R, Soni V, Valse PD. et al. Neonatal intestinal obstruction associated with situs inversus totalis: two case reports and a review of the literature. J Med Case Rep 2017; 11: 264
- 29 Swanson MA, Coughlin CR, Scharer GH. et al. Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann Neurol 2015; 78: 606-618
- 30 Suzuki Y, Kure S, Oota M. et al. Nonketotic hyperglycinemia: proposal of a diagnostic and treatment strategy. Pediatr Neurol 2010; 43: 221-224
- 31 Summar ML, Koelker S, Freedenberg D. et al. The incidence of urea cycle disorders. Mol Genet Metab 2013; 110: 179-180
- 32 Dessay S, Moizard MP, Gilardi JL. et al. FG syndrome: linkage analysis in two families supporting a new gene localization at Xp22.3 [FGS3]. Am J Med Genet 2002; 112: 6-11
- 33 Sugarman EA, Nagan N, Zhu H. et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet 2012; 20: 27-32
- 34 Galvis DA, Ang SM, Wells TR. et al. Microdissection study of the myentric plexus in acardia, ataxia-telangiectasia, cystic fibrosis, extrahepatic biliary atresia, pediatric AIDS and Werdnig-Hoffmann disease. Pediatr Pathol 1992; 12: 385-395
- 35 Bricceno KV, Martinez T, Leikina E. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum Mol Genet 2014; 23: 4745-4757
- 36 Yang Y, Vassilakos G, Hammers DW. et al. Smooth muscle atrophy and colon pathology in SMN deficient mice. Am J Transl Res 2019; 11: 1789-1799
- 37 Messina S, Pane M, De Rose P. et al. Feeding problems and malnutrition in spinal muscular atrophy type II. Neuromuscul Disord 2008; 18: 389-393
- 38 Sintusek P, Catapano F, Angkathunkayul N. et al. Histopathological defects in intestine in severe spinal muscular atrophy mice are improved by systemic antisense oligonucleotide treatment. PLoS One 2016; 11: e0155032
- 39 Wan B, Feng P, Guan Z. et al. A severe mouse model of spinal muscular atrophy develops early systemic inflammation. Hum Mol Genet 2018; 27: 4061-4076
- 40 Schreml J, Riessland M, Paterno M. et al. Severe SMA mice show organ impairment that cannot be rescued by therapy with the HDACi JNJ-26481585. Eur J Hum Genet 2012; 21: 643-652
- 41 Schechter R, Torfs CP, Bateson TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol 1997; 11: 407-427
- 42 Yuan SM. Congenital heart defects in Williams syndrome. Turk J Pediatr 2017; 59: 225-232
- 43 Pober BR. Williams-Beuren syndrome. N Engl J Med 2010; 362: 239-252
- 44 Kozel BA, Barak B, Kim CA. et al. Williams syndrome. Nat Rev Dis Primers 2021; 7: 42
- 45 Alfieri P, Scibelli F, Montanaro FAM. et al. Differences and similarities in adaptive functioning between children with autism spectrum disorder and Williams-Beuren syndrome: A longitudinal study. Genes (Basel) 2022; 13: 1266
- 46 Cherniske EM, Carpenter TO, Klaiman C. et al. Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A 2004; 131: 255-264
- 47 Gilbert-Barness E, Fox T, Morrow G. et al. Williams syndrome associated with Crohn disease, multiple infections, and chronic granulomatous disease. Fetal Pediatr Pathol 2004; 23: 29-37
- 48 Raber MM, Bowling SM, Dorn M. Complicated diverticulitis in a 35-year-old patient with Williams syndrome: A case report. Cureus 2022; 14: e26604
- 49 Ravel A, Mircher C, Rebillat AS. et al. Feeding problems and gastrointestinal diseases in Down syndrome. Arch Pediatr 2020; 27: 53-60
- 50 Yokoyama S, Uyama S, Iwagami H. et al. Successful combination of endoscopic pyloromyotomy and balloon dilatation for hypertrophic pyloric stenosis in an older child: A novel procedure. Surg Case Rep 2016; 2: 145
- 51 Pueyo Gil C, Oshiro K, Elías Pollina J. et al. Aumento de la expresión del proteoglicano condroitín-sulfato, fbronectina y fbroblastos en la estenosis hipertrófca de píloro [Increase of the chondroitinsulfate proteoglycan, fbronectin and fbroblasts in infantile hypertrophic pyloric stenosis]. Cir Pediatr 2001; 14: 103-107