CC BY-NC-ND 4.0 · Ultrasound Int Open 2024; 10: a24218709
DOI: 10.1055/a-2421-8709
Rapid Communication

Lung ultrasound score for the assessment of lung aeration in ARDS patients: comparison of two approaches

1   Anesthesiology and Intensive Care, San Matteo Hospital, Pavia, Italy (Ringgold ID: RIN18631)
,
Davide Chiumello
2   Department of Health Sciences, University of Milan, Milano, Italy (Ringgold ID: RIN9304)
3   Anaesthesia and Intensive Care, San Paolo University Hospital, Milano, Italy (Ringgold ID: RIN72264)
4   Coordinated Research Center on Respiratory Failure, University of Milan, Milano, Italy (Ringgold ID: RIN9304)
,
Francesco Mojoli
5   Anesthesiology, Intensive Care and Pain Medicine, San Matteo Hospital, Pavia, Italy (Ringgold ID: RIN18631)
1   Anesthesiology and Intensive Care, San Matteo Hospital, Pavia, Italy (Ringgold ID: RIN18631)
› Author Affiliations

Abstract

Purpose A 4-step lung ultrasound (LUS) score has been previously used to quantify lung density. We compared 2 versions of this scoring system for distinguishing severe from moderate loss of aeration in ARDS: coalescence-based score (cLUS) vs. quantitative-based score (qLUS – >50% pleura occupied by artefacts).

Materials and Methods  We compared qLUS and cLUS to lung density measured by quantitative CT scan in 12 standard thoracic regions. A simplified approach (1 scan per region) was compared to an extensive one (regional score computed as the mean of all relevant intercostal space scores).

Results  We examined 13 conditions in 7 ARDS patients (7 at PEEP 5, 6 at PEEP 15 cmH2O-156 regions, 398 clips). Switching from cLUS to qLUS resulted in a change in interpretation in 117 clips (29.4%, 1-point reduction) and in 41.7% of the regions (64 decreases (range 0.2–1), 1 increase (0.2 points)). Regional qLUS showed very strong correlation with lung density (rs=0.85), higher than cLUS (rs=0.79; p=0.010). The agreement with CT classification in well aerated, poorly aerated, and not aerated tissue was moderate for cLUS (agreement 65.4%; Cohen’s K coefficient 0.475 (95%CI 0.391–0.547); p<0.0001) and substantial for qLUS (agreement 81.4%; Cohen’s K coefficient 0.701 (95%CI 0.653–0.765), p<0.0001). The agreement between single spot and extensive approaches was almost perfect (cLUS: agreement 89.1%, Cohen’s kappa coefficient 0.840 (95%CI 0.811–0.911), p<0.0001; qLUS: agreement 86.5%, Cohen’s kappa coefficient 0.819 (95%CI 0.761–0.848), p<0.0001).

Conclusion  A LUS score based on the percentage of occupied pleura performs better than a coalescence-based approach for quantifying lung density. A simplified approach performs as well as an extensive one.

Supplementary Material



Publication History

Received: 15 February 2024

Accepted after revision: 21 July 2024

Article published online:
21 October 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

Bibliographical Record
Silvia Mongodi, Davide Chiumello, Francesco Mojoli. Lung ultrasound score for the assessment of lung aeration in ARDS patients: comparison of two approaches. Ultrasound Int Open 2024; 10: a24218709.
DOI: 10.1055/a-2421-8709
 
  • References

  • 1 Soldati G, Inchingolo R, Smargiassi A, Sher S, Nenna R, Inchingolo CD, Valente S. Ex vivo lung sonography: morphologic-ultrasound relationship. Ultrasound Med Biol 2012; 38: 1169-1179
  • 2 Mongodi S, De Luca D, Colombo A, Stella A, Santangelo E, Corradi F, Gargani L, Rovida S, Volpicelli G, Bouhemad B, Mojoli F. Quantitative Lung Ultrasound: Technical Aspects and Clinical Applications. Anesthesiology 2021; 134: 949-965
  • 3 Zhao Z, Jiang L, Xi X, Jiang Q, Zhu B, Wang M, Xing J, Zhang D. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med 2015; 15: 98
  • 4 Chiumello D, Mongodi S, Algieri I. et al. Assessment of Lung Aeration and Recruitment by CT Scan and Ultrasound in Acute Respiratory Distress Syndrome Patients*. Crit Care Med 2018; 46: 1761-1768
  • 5 Mojoli F, Bouhemad B, Mongodi S, Lichtenstein D. Lung Ultrasound for Critically Ill Patients. Am J Respir Crit Care Med 2019; 199: 701-714
  • 6 AZUREA Network. Zieleskiewicz L, Markarian T, Lopez A, Taguet C, Mohammedi N, Boucekine M, Baumstarck K, Besch G, Mathon G, Duclos G, Bouvet L, Michelet P, Allaouchiche B, Chaumoître K, Di Bisceglie M, Leone M. Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia. Intensive Care Med 2020; 46: 1707-1713
  • 7 Deng Q, Zhang Y, Wang H, Chen L, Yang Z, Peng Z, Liu Y, Feng C, Huang X, Jiang N, Wang Y, Guo J, Sun B, Zhou Q. Semiquantitative lung ultrasound scores in the evaluation and follow-up of critically ill patients with COVID-19: a single-center study. Acad Radiol 2020; 27: 1363-1372
  • 8 Lichter Y, Topilsky Y, Taieb P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Vine J, Goren O, Cohen B, Sapir O, Granot Y, Mann T, Friedman S, Angel Y, Adi N, Laufer-Perl M, Ingbir M, Arbel Y, Matot I, Szekely Y. Lung ultrasound predicts clinical course and outcomes in COVID-19 patients. Intensive Care Med 2020; 46: 1873-1883
  • 9 Caltabeloti F, Monsel A, Arbelot C, Brisson H, Lu Q, Gu W-J, Zhou G-J, Auler JOC, Rouby J-J. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study. Crit Care 2014; 18: R91
  • 10 Bouhemad B, Brisson H, Le-Guen M. et al. Bedside Ultrasound Assessment of Positive End-Expiratory Pressure–induced Lung Recruitment. Am J Respir Crit Care Med 2011; 183: 341-347
  • 11 Costamagna A, Pivetta E, Goffi A, Steinberg I, Arina P, Mazzeo AT, Del Sorbo L, Veglia S, Davini O, Brazzi L, Ranieri VM, Fanelli V. Clinical performance of lung ultrasound in predicting ARDS morphology. Ann Intensive Care 2021; 11: 51
  • 12 Pierrakos C, Smit MR, Pisani L, Paulus F, Schultz MJ, Constantin JM, Chiumello D, Mojoli F, Mongodi S, Bos LDJ. Lung Ultrasound Assessment of Focal and Non-focal Lung Morphology in Patients With Acute Respiratory Distress Syndrome. Front Physiol 2021; 12: 730857
  • 13 Robba C, Ball L, Battaglini D, Iannuzzi F, Brunetti I, Fiaschi P, Zona G, Taccone FS, Messina A, Mongodi S, Pelosi P. Effects of positive end‑expiratory pressure on lung ultrasound patterns and their correlation with intracranial pressure in mechanically ventilated brain injured patients. Crit Care 2022; 26: 31
  • 14 Santangelo E, Mongodi S, Bouhemad B, Mojoli F. The weaning from mechanical ventilation: a comprehensive ultrasound approach. Curr Opin Crit Care 2022; 28: 322-330
  • 15 Lung Ultrasound Study Group. Soummer A, Perbet S, Brisson H, Arbelot C, Constantin J-M, Lu Q, Rouby J-J. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress*. Crit Care Med 2012; 40: 2064-2072
  • 16 Bouhemad B, Liu Z-H, Arbelot C, Zhang M, Ferarri F, Le-Guen M, Girard M, Lu Q, Rouby J-J. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med 2010; 38: 84-92
  • 17 Mongodi S, Pozzi M, Orlando A, Bouhemad B, Stella S, Tavazzi G, Via G, Iotti GA, Mojoli F. Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience. Intensive Care Med 2018; 44: 123-124
  • 18 Lu X, Arbelot C, Schreiber A, Langeron O, Monsel A, Lu Q. Ultrasound Assessment of Lung Aeration in Subjects Supported by Venovenous Extracorporeal Membrane Oxygenation. Respir Care 2019; 64: 1478-1487
  • 19 Mongodi S, Colombo A, Orlando A, Cavagna L, Bouhemad B, Iotti GA, Mojoli F. Combined ultrasound-CT approach to monitor acute exacerbation of interstitial lung disease. Ultrasound J 2020; 12: 27
  • 20 Lieveld AWE, Heldeweg MLA, Schouwenburg J, Veldhuis L, Haaksma ME, van Haaften RM, Teunissen BP, Smit JM, Twisk J, Heunks L, Nanayakkara PWB, Tuinman PR. Monitoring of pulmonary involvement in critically ill COVID-19 patients – should lung ultrasound be preferred over CT?. Ultrasound J. 2023; 15: 11
  • 21 COVIDLUS study group. Dargent A, Chatelain E, Si-Mohamed S, Simon M, Baudry T, Kreitmann L, Quenot JP, Cour M, Argaud L. Lung ultrasound score as a tool to monitor disease progression and detect ventilator-associated pneumonia during COVID-19-associated ARDS. Heart Lung 2021; 50: 700-705
  • 22 Mongodi S, De Vita N, Salve G, Bonaiti S, Daverio F, Cavagnino M, Siano G, Amatu A, Maggio G, Musella V, Klersy C, Vaschetto R, Bouhemad B, Mojoli F. The Role of Lung Ultrasound Monitoring in Early Detection of Ventilator – Associated Pneumonia in COVID-19 Patients: A Retrospective Observational Study. J Clin Med 2022; 11: 3001
  • 23 Mongodi S, Orlando A, Arisi E, Tavazzi G, Santangelo E, Caneva L, Pozzi M, Pariani E, Bettini G, Maggio G, Perlini S, Presa L, Iotti GA, Mojoli F. Lung Ultrasound in Patients with Acute Respiratory Failure Reduces Conventional Imaging and Health Care Provider Exposure to COVID-19. Ultrasound Med Biol 2020; S0301-5629: 30205-2
  • 24 Mongodi S, Bouhemad B, Orlando A. et al. Modified Lung Ultrasound Score for Assessing and Monitoring Pulmonary Aeration. Ultraschall der Medizin – Eur J Ultrasound 2017; 38: 530-537
  • 25 Brusasco C, Santori G, Bruzzo E, Trò R, Robba C, Tavazzi G, Guarracino F, Forfori F, Boccacci P, Corradi F. Quantitative lung ultrasonography: a putative new algorithm for automatic detection and quantification of B-lines. Crit Care 2019; 23: 28
  • 26 Heldeweg MLA, Lopez Matta JE, Haaksma ME. et al. Lung ultrasound and computed tomography to monitor COVID-19 pneumonia in critically ill patients: a two-center prospective cohort study. ICMx 2021; 9: 1
  • 27 Gattinoni L, Pesenti A, Avalli L. et al Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987; 136: 730-736
  • 28 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-174
  • 29 Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound 2008; 6: 16
  • 30 International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS). Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, Dean A, Tsung JW, Soldati G, Copetti R, Bouhemad B, Reissig A, Agricola E, Rouby JJ, Arbelot C, Liteplo A, Sargsyan A, Silva F, Hoppmann R, Breitkreutz R, Seibel A, Neri L, Storti E, Petrovic T. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012; 38: 577-591
  • 31 Gomond-Le Goff C, Vivalda L, Foligno S, Loi B, Yousef N, De Luca D. Effect of Different Probes and Expertise on the Interpretation Reliability of Point-of-Care Lung Ultrasound. Chest. 2020; 157: 924-931
  • 32 Volpicelli G, Fraccalini T, Cardinale L, Stranieri G, Senkeev R, Maggiani G, Pacielli A, Basile D. Feasibility of a New Lung Ultrasound Protocol to Determine the Extent of Lung Injury in COVID-19 Pneumonia. Chest. 2023; 163: 176-184
  • 33 ALIFE Study Group. Heldeweg MLA, Lieveld AWE, Mousa A, Pisani L, Tuinman PR. Validation of New Quantitative Lung Ultrasound Protocol and Comparison With Lung Ultrasound Score in Patients With COVID-19. Chest 2023; 164: 1512-1515