RSS-Feed abonnieren
DOI: 10.1055/a-2436-8444
Radiomic Applications in Skull Base Pathology: A Systematic Review of Potential Clinical Uses
Authors

Abstract
Objectives Radiomics involves the extraction and analysis of numerous quantitative features of medical imaging which can add more information from radiological images often beyond initial comprehension of a clinician. Unlike deep learning, radiomics allows some understanding of identified quantitative features for clinical prediction. We sought to explore the current state of radiomics applications in the skull base literature.
Methods A systematic review of studies evaluating radiomics in skull base was performed, including those with and without machine-learning approaches. Studies were summarized into thematic elements as well as specific pathologies.
Results A total of 102 studies with 26,280 radiographic images were included. The earliest radiomic study was published in 2017 with exponential growth in research since then. Most studies focused on tumor diagnosis (40.8%), followed by tumor prognosis (31.1%), automated segmentation (16.5%), other applications (7.8%), and lastly prediction of intraoperative features (3.9%). Pituitary adenomas (41.7%) and vestibular schwannomas (18.4%) represented the most commonly evaluated pathologies; however, radiomics could be applied to a heterogeneous collection of skull base pathologies. The average study included 258 ± 677 cases (range 4; 6,755).
Conclusion Radiomics offers many functions in treating skull base pathology and will likely be an essential component of future clinical care. Larger sample sizes, validation of predictive models, and clinical application are needed. Further investigation into the strengths and weaknesses of radiomic applications in skull base treatments is warranted.
Keywords
radiomics - artificial intelligence - machine learning - skull base - pituitary adenoma - vestibular schwannoma - head and neck cancerPublikationsverlauf
Eingereicht: 28. April 2024
Angenommen: 06. Oktober 2024
Accepted Manuscript online:
08. Oktober 2024
Artikel online veröffentlicht:
04. November 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Choudhri AF, Parmar HA, Morales RE, Gandhi D. Lesions of the skull base: imaging for diagnosis and treatment. Otolaryngol Clin North Am 2012; 45 (06) 1385-1404
- 2 Khanna JN, Natrajan S, Galinde J. Skull base tumors: a kaleidoscope of challenge. J Neurol Surg Rep 2014; 75 (01) e11-e21
- 3 Mathur A, Jain N, Kesavadas C, Thomas B, Kapilamoorthy TR. Imaging of skull base pathologies: role of advanced magnetic resonance imaging techniques. Neuroradiol J 2015; 28 (04) 426-437
- 4 Rogers W, Thulasi Seetha S, Refaee TAG. et al. Radiomics: from qualitative to quantitative imaging. Br J Radiol 2020; 93 (1108): 20190948
- 5 Wagner MW, Namdar K, Biswas A, Monah S, Khalvati F, Ertl-Wagner BB. Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know. Neuroradiology 2021; 63 (12) 1957-1967
- 6 Pankhania M, Mehta A. Radiomics & radiology: a critical step towards integrated healthcare. Asian Journal of Medical Radiological Research Volume 2020; 8 (02) 23
- 7 Rizzo S, Botta F, Raimondi S. et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2018; 2 (01) 1-8
- 8 Liu Z, Wang S, Dong D. et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 2019; 9 (05) 1303-1322
- 9 Taha B, Boley D, Sun J, Chen C. Potential and limitations of radiomics in neuro-oncology. J Clin Neurosci 2021; 90: 206-211
- 10 Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 2019; 17: 995-1008
- 11 Ramkumar S, Ranjbar S, Ning S. et al. MRI-based texture analysis to differentiate sinonasal squamous cell carcinoma from inverted papilloma. AJNR Am J Neuroradiol 2017; 38 (05) 1019-1025
- 12 Fan Y, Jiang S, Hua M, Feng S, Feng M, Wang R. Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly. Front Endocrinol (Lausanne) 2019; 10: 588
- 13 Holdaway IM, Bolland MJ, Gamble GD. A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur J Endocrinol 2008; 159 (02) 89-95
- 14 Kocak B, Durmaz ES, Kadioglu P. et al. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol 2019; 29 (06) 2731-2739
- 15 Zwanenburg A, Vallières M, Abdalah MA. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020; 295 (02) 328-338
- 16 Wei W, Wang K, Liu Z. et al. Radiomic signature: a novel magnetic resonance imaging-based prognostic biomarker in patients with skull base chordoma. Radiother Oncol 2019; 141: 239-246
- 17 Buizza G, Paganelli C, D'Ippolito E. et al. Radiomics and dosiomics for predicting local control after carbon-ion radiotherapy in skull-base chordoma. Cancers (Basel) 2021; 13 (02) 339
- 18 Zhai Y, Bai J, Xue Y. et al. Development and validation of a preoperative MRI-based radiomics nomogram to predict progression-free survival in patients with clival chordomas. Front Oncol 2022; 12: 996262
- 19 Yamazawa E, Takahashi S, Shin M. et al. MRI-based radiomics differentiates skull base chordoma and chondrosarcoma: a preliminary study. Cancers (Basel) 2022; 14 (13) 3264
- 20 Li L, Wang K, Ma X. et al. Radiomic analysis of multiparametric magnetic resonance imaging for differentiating skull base chordoma and chondrosarcoma. Eur J Radiol 2019; 118: 81-87
- 21 Tian Z, Chen C, Zhang Y, Fan Y, Feng R, Xu J. Radiomic analysis of craniopharyngioma and meningioma in the sellar/parasellar area with MR images features and texture features: a feasible study. Contrast Media Mol Imaging 2020; 2020: 4837156
- 22 Yan X, Lin B, Fu J. et al. Deep-learning-based automatic segmentation and classification for craniopharyngiomas. Front Oncol 2023; 13: 1048841
- 23 Prince EW, Ghosh D, Görg C, Hankinson TC. Uncertainty-aware deep learning classification of adamantinomatous craniopharyngioma from preoperative MRI. Diagnostics (Basel) 2023; 13 (06) 1132
- 24 Prince EW, Whelan R, Mirsky DM. et al. Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images. Sci Rep 2020; 10 (01) 16885
- 25 Zhu L, Zhang L, Hu W. et al. A multi-task two-path deep learning system for predicting the invasiveness of craniopharyngioma. Comput Methods Programs Biomed 2022; 216: 106651
- 26 Chen X, Tong Y, Shi Z. et al. Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach. BMC Neurol 2019; 19 (01) 6
- 27 Teng Y, Ran X, Chen B, Chen C, Xu J. Pathological diagnosis of adult craniopharyngioma on MR images: an automated end-to-end approach based on deep neural networks requiring no manual segmentation. J Clin Med 2022; 11 (24) 7481
- 28 Lyu X, Zhang D, Pan H, Zhu H, Chen S, Lu L. Machine learning models for differential diagnosis of Cushing's disease and ectopic ACTH secretion syndrome. Endocrine 2023; 80 (03) 639-646
- 29 Zhang W, Li D, Feng M. et al. Electronic medical records as input to predict postoperative immediate remission of Cushing's disease: application of word embedding. Front Oncol 2021; 11: 754882
- 30 Zhang W, Sun M, Fan Y. et al. Machine learning in preoperative prediction of postoperative immediate remission of histology-positive Cushing's disease. Front Endocrinol (Lausanne) 2021; 12: 635795
- 31 Zhao Z, Xiao D, Nie C. et al. Development of a nomogram based on preoperative bi-parametric MRI and blood indices for the differentiation between cystic-solid pituitary adenoma and craniopharyngioma. Front Oncol 2021; 11: 709321
- 32 Fan Y, Liu Z, Hou B. et al. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma. Eur J Radiol 2019; 121: 108647
- 33 Shahrestani S, Cardinal T, Micko A. et al. Neural network modeling for prediction of recurrence, progression, and hormonal non-remission in patients following resection of functional pituitary adenomas. Pituitary 2021; 24 (04) 523-529
- 34 Park YW, Kang Y, Ahn SS. et al. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 2020; 23 (06) 691-700
- 35 Fan Y, Chai Y, Li K. et al. Non-invasive and real-time proliferative activity estimation based on a quantitative radiomics approach for patients with acromegaly: a multicenter study. J Endocrinol Invest 2020; 43 (06) 755-765
- 36 Machado LF, Elias PCL, Moreira AC, Dos Santos AC, Murta Junior LO. MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas. Comput Biol Med 2020; 124: 103966
- 37 Zhang S, Song G, Zang Y. et al. Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 2018; 28 (09) 3692-3701
- 38 Gologorsky R, Harake E, von Oiste G. et al. Generating novel pituitary datasets from open-source imaging data and deep volumetric segmentation. Pituitary 2022; 25 (06) 842-853
- 39 Mendi BAR, Batur H, Çay N, Çakır BT. Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency. Acta Radiol 2023; 64 (08) 2470-2478
- 40 Qian Y, Qiu Y, Li CC. et al. A novel diagnostic method for pituitary adenoma based on magnetic resonance imaging using a convolutional neural network. Pituitary 2020; 23 (03) 246-252
- 41 Shu XJ, Chang H, Wang Q. et al. Deep Learning model-based approach for preoperative prediction of Ki67 labeling index status in a noninvasive way using magnetic resonance images: a single-center study. Clin Neurol Neurosurg 2022; 219: 107301
- 42 Ugga L, Cuocolo R, Solari D. et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 2019; 61 (12) 1365-1373
- 43 Wang X, Dai Y, Lin H. et al. Shape and texture analyses based on conventional MRI for the preoperative prediction of the aggressiveness of pituitary adenomas. Eur Radiol 2023; 33 (05) 3312-3321
- 44 Staartjes VE, Serra C, Muscas G. et al. Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study. Neurosurg Focus 2018; 45 (05) E12
- 45 Staartjes VE, Zattra CM, Akeret K. et al. Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery. J Neurosurg 2019; 133 (02) 329-335
- 46 Lee DH, Park JE, Nam YK. et al. Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Sci Rep 2021; 11 (01) 21302
- 47 Li H, Zhao Q, Zhang Y. et al. Image-driven classification of functioning and nonfunctioning pituitary adenoma by deep convolutional neural networks. Comput Struct Biotechnol J 2021; 19: 3077-3086
- 48 Zhang Y, Chen C, Huang W. et al. Machine learning-based radiomics of the optic chiasm predict visual outcome following pituitary adenoma surgery. J Pers Med 2021; 11 (10) 991
- 49 Kim M, Kim HS, Kim HJ. et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting. Radiology 2021; 298 (01) 114-122
- 50 Villalonga JF, Solari D, Cuocolo R. et al. Clinical application of the “sellar barrier's concept” for predicting intraoperative CSF leak in endoscopic endonasal surgery for pituitary adenomas with a machine learning analysis. Front Surg 2022; 9: 934721
- 51 Baysal B, Eser MB, Dogan MB, Kursun MA. Multivariable diagnostic prediction model to detect hormone secretion profile from T2W MRI radiomics with artificial neural networks in pituitary adenomas. Medeniyet Med J 2022; 37 (01) 36-43
- 52 Zhang C, Heng X, Neng W. et al. Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning. Chin Neurosurg J 2022; 8 (01) 21
- 53 Kim M, Kim HS, Park JE. et al. Thin-slice pituitary MRI with deep learning-based reconstruction for preoperative prediction of cavernous sinus invasion by pituitary adenoma: a prospective study. AJNR Am J Neuroradiol 2022; 43 (02) 280-285
- 54 Zhang Y, Zheng J, Huang Z, Teng Y, Chen C, Xu J. Predicting visual recovery in pituitary adenoma patients post-endoscopic endonasal transsphenoidal surgery: Harnessing delta-radiomics of the optic chiasm from MRI. Eur Radiol 2023; 33 (11) 7482-7493
- 55 Zhang Y, Chen C, Huang W. et al. Preoperative volume of the optic chiasm is an easily obtained predictor for visual recovery of pituitary adenoma patients following endoscopic endonasal transsphenoidal surgery: a cohort study. Int J Surg 2023; 109 (04) 896-904
- 56 Da Mutten R, Zanier O, Ciobanu-Caraus O. et al. Automated volumetric assessment of pituitary adenoma. Endocrine 2024; 83 (01) 171-177
- 57 Černý M, Kybic J, Májovský M. et al. Fully automated imaging protocol independent system for pituitary adenoma segmentation: a convolutional neural network-based model on sparsely annotated MRI. Neurosurg Rev 2023; 46 (01) 116
- 58 Jiang X, Xiao J, Zhang Q, Wang L, Jiang J, Lan K. Improved U-Net based on cross-layer connection for pituitary adenoma MRI image segmentation. Math Biosci Eng 2023; 20 (01) 34-51
- 59 Peng A, Dai H, Duan H. et al. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging. Eur J Radiol 2020; 125: 108892
- 60 Wang H, Zhang W, Li S, Fan Y, Feng M, Wang R. Development and evaluation of deep learning-based automated segmentation of pituitary adenoma in clinical task. J Clin Endocrinol Metab 2021; 106 (09) 2535-2546
- 61 Liu CX, Heng LJ, Han Y. et al. Usefulness of the texture signatures based on multiparametric MRI in predicting growth hormone pituitary adenoma subtypes. Front Oncol 2021; 11: 640375
- 62 Zeynalova A, Kocak B, Durmaz ES. et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 2019; 61 (07) 767-774
- 63 Cuocolo R, Ugga L, Solari D. et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology 2020; 62 (12) 1649-1656
- 64 Park H, Nam YK, Kim HS. et al. Deep learning-based image reconstruction improves radiologic evaluation of pituitary axis and cavernous sinus invasion in pituitary adenoma. Eur J Radiol 2023; 158: 110647
- 65 Park YW, Eom J, Kim S. et al. Radiomics with ensemble machine learning predicts dopamine agonist response in patients with prolactinoma. J Clin Endocrinol Metab 2021; 106 (08) e3069-e3077
- 66 Wang H, Chang J, Zhang W. et al. Radiomics model and clinical scale for the preoperative diagnosis of silent corticotroph adenomas. J Endocrinol Invest 2023; 46 (09) 1843-1854
- 67 Wang Y, Chen S, Shi F. et al. MR-based radiomics for differential diagnosis between cystic pituitary adenoma and Rathke cleft cyst. Comput Math Methods Med 2021; 2021: 6438861
- 68 Jiang C, Zhang W, Wang H. et al. Machine learning approaches to differentiate sellar-suprasellar cystic lesions on magnetic resonance imaging. Bioengineering (Basel) 2023; 10 (11) 1295
- 69 Bertagna X, Guignat L, Groussin L, Bertherat J. Cushing's disease. Best Pract Res Clin Endocrinol Metab 2009; 23 (05) 607-623
- 70 Miles MVP, Beasley JR, Reed HE. et al. Overutilization of helicopter emergency medical services in central gulf coast region results in unnecessary expenditure. J Surg Res 2022; 273: 211-217
- 71 Murdock N, Mahan M, Chou E. Benign Orbital Tumors. StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC; 2024
- 72 Chaskes MB, Rabinowitz MR. Orbital schwannoma. J Neurol Surg B Skull Base 2020; 81 (04) 376-380
- 73 Ren J, Yuan Y, Qi M, Tao X. MRI-based radiomics nomogram for distinguishing solitary fibrous tumor from schwannoma in the orbit: a two-center study. Eur Radiol 2024; 34 (01) 560-568
- 74 Shao J, Zhu J, Jin K. et al. End-to-end deep-learning-based diagnosis of benign and malignant orbital tumors on computed tomography images. J Pers Med 2023; 13 (02) 204
- 75 Chen L, Shen Y, Huang X. et al. MRI-based radiomics for differentiating orbital cavernous hemangioma and orbital schwannoma. Front Med (Lausanne) 2021; 8: 795038
- 76 Hennessey PT, Reh DD. Chapter 9: benign sinonasal neoplasms. Am J Rhinol Allergy 2013; 27 (Suppl. 01) S31-S34
- 77 Lisan Q, Laccourreye O, Bonfils P. Sinonasal inverted papilloma: from diagnosis to treatment. Eur Ann Otorhinolaryngol Head Neck Dis 2016; 133 (05) 337-341
- 78 Bracigliano A, Tatangelo F, Perri F. et al. Malignant sinonasal tumors: update on histological and clinical management. Curr Oncol 2021; 28 (04) 2420-2438
- 79 Gu J, Yu Q, Li Q. et al. MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors. Front Oncol 2022; 12: 1003639
- 80 Yan Y, Liu Y, Tao J. et al. Preoperative prediction of malignant transformation of sinonasal inverted papilloma using MR radiomics. Front Oncol 2022; 12: 870544
- 81 Wang X, Dai S, Wang Q, Chai X, Xian J. Investigation of MRI-based radiomics model in differentiation between sinonasal primary lymphomas and squamous cell carcinomas. Jpn J Radiol 2021; 39 (08) 755-762
- 82 Park CJ, Choi SH, Kim D. et al. MRI radiomics may predict early tumor recurrence in patients with sinonasal squamous cell carcinoma. Eur Radiol 2024; 34 (05) 3151-3159
- 83 Fujima N, Shimizu Y, Yoshida D. et al. Machine-learning-based prediction of treatment outcomes using MR imaging-derived quantitative tumor information in patients with sinonasal squamous cell carcinomas: a preliminary study. Cancers (Basel) 2019; 11 (06) 800
- 84 Zhang H, Wang H, Hao D. et al. An MRI-based radiomic nomogram for discrimination between malignant and benign sinonasal tumors. J Magn Reson Imaging 2021; 53 (01) 141-151
- 85 Bi SC, Zhang H, Wang HX. et al. Radiomics nomograms based on multi-parametric MRI for preoperative differential diagnosis of malignant and benign sinonasal tumors: a two-centre study. Front Oncol 2021; 11: 659905
- 86 King D, Adidharma L, Peng H. et al. Automatic summarization of endoscopic skull base surgical videos through object detection and hidden Markov modeling. Comput Med Imaging Graph 2023; 108: 102248
- 87 Shankar Kikkeri N, Nagalli S. Trigeminal Neuralgia. StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC; 2024
- 88 Mulford KL, Moen SL, Grande AW, Nixdorf DR, Van de Moortele PF. Identifying symptomatic trigeminal nerves from MRI in a cohort of trigeminal neuralgia patients using radiomics. Neuroradiology 2022; 64 (03) 603-609
- 89 Willsey MS, Mossner JM, Chestek CA, Sagher O, Patil PG. Classifier using pontine radial diffusivity and symptom duration accurately predicts recurrence of trigeminal neuralgia after microvascular decompression: a pilot study and algorithm description. Neurosurgery 2021; 89 (05) 777-783
- 90 Ge X, Wang L, Pan L. et al. Risk factors for unilateral trigeminal neuralgia based on machine learning. Front Neurol 2022; 13: 862973
- 91 Lin J, Zhang Y, Li W, Yan J, Ke Y. Flatness of the Meckel cave may cause primary trigeminal neuralgia: a radiomics-based study. J Headache Pain 2021; 22 (01) 104
- 92 Wang F, Ma A, Wu Z, Xie M, Lun P, Sun P. Development and validation of radiomics models for the prediction of diagnosis of classic trigeminal neuralgia. Front Neurosci 2023; 17: 1188590
- 93 Mo J, Zhang J, Hu W, Luo F, Zhang K. Whole-brain morphological alterations associated with trigeminal neuralgia. J Headache Pain 2021; 22 (01) 95
- 94 Pan L, Ye H, Zhu X, Wang L, Ge X. Radiomics analysis of unaffected side changes in classic trigeminal neuralgia. Am J Transl Res 2022; 14 (12) 8640-8649
- 95 Zhang C, Li M, Luo Z. et al. Deep learning-driven MRI trigeminal nerve segmentation with SEVB-net. Front Neurosci 2023; 17: 1265032
- 96 Carlson ML, Link MJ. Vestibular schwannomas. N Engl J Med 2021; 384 (14) 1335-1348
- 97 Shapey J, Wang G, Dorent R. et al. An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI. J Neurosurg 2019; 134 (01) 171-179
- 98 McGrath H, Li P, Dorent R. et al. Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI. Int J Comput Assist Radiol Surg 2020; 15 (09) 1445-1455
- 99 Shapey J, Kujawa A, Dorent R. et al. Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Sci Data 2021; 8 (01) 286
- 100 Kujawa A, Dorent R, Connor S. et al. Automated Koos classification of vestibular schwannoma. Front Radiol 2022; 2: 837191
- 101 Neves CA, Liu GS, El Chemaly T, Bernstein IA, Fu F, Blevins NH. Automated radiomic analysis of vestibular schwannomas and inner ears using contrast-enhanced T1-weighted and T2-weighted magnetic resonance imaging sequences and artificial intelligence. Otol Neurotol 2023; 44 (08) e602-e609
- 102 Zhang Z, Zhang X, Yang Y. et al. Accurate segmentation algorithm of acoustic neuroma in the cerebellopontine angle based on ACP-TransUNet. Front Neurosci 2023; 17: 1207149
- 103 Neve OM, Romeijn SR, Chen Y. et al. Automated 2-dimensional measurement of vestibular schwannoma: validity and accuracy of an artificial intelligence algorithm. Otolaryngol Head Neck Surg 2023; 169 (06) 1582-1589
- 104 Teng Y, Chen C, Shu X, Zhao F, Zhang L, Xu J. Automated, fast, robust brain extraction on contrast-enhanced T1-weighted MRI in presence of brain tumors: an optimized model based on multi-center datasets. Eur Radiol 2024; 34 (02) 1190-1199
- 105 George-Jones NA, Chkheidze R, Moore S, Wang J, Hunter JB. MRI texture features are associated with vestibular schwannoma histology. Laryngoscope 2021; 131 (06) E2000-E2006
- 106 Itoyama T, Nakaura T, Hamasaki T. et al. Whole tumor radiomics analysis for risk factors associated with rapid growth of vestibular schwannoma in contrast-enhanced T1-weighted images. World Neurosurg 2022; 166: e572-e582
- 107 Yang HC, Wu CC, Lee CC. et al. Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after Gamma Knife radiosurgery based on preradiosurgical MR radiomics. Radiother Oncol 2021; 155: 123-130
- 108 Langenhuizen PPJH, Sebregts SHP, Zinger S, Leenstra S, Verheul JB, de With PHN. Prediction of transient tumor enlargement using MRI tumor texture after radiosurgery on vestibular schwannoma. Med Phys 2020; 47 (04) 1692-1701
- 109 George-Jones NA, Wang K, Wang J, Hunter JB. Prediction of vestibular schwannoma enlargement after radiosurgery using tumor shape and MRI texture features. Otol Neurotol 2021; 42 (03) e348-e354
- 110 Gadot R, Anand A, Lovin BD, Sweeney AD, Patel AJ. Predicting surgical decision-making in vestibular schwannoma using tree-based machine learning. Neurosurg Focus 2022; 52 (04) E8
- 111 Song D, Zhai Y, Tao X, Zhao C, Wang M, Wei X. Prediction of blood supply in vestibular schwannomas using radiomics machine learning classifiers. Sci Rep 2021; 11 (01) 18872
- 112 Koechli C, Vu E, Sager P. et al. Convolutional neural networks to detect vestibular schwannomas on single MRI slices: a feasibility study. Cancers (Basel) 2022; 14 (09) 2069
- 113 Safari M, Fatemi A, Afkham Y, Archambault L. Patient-specific geometrical distortion corrections of MRI images improve dosimetric planning accuracy of vestibular schwannoma treated with gamma knife stereotactic radiosurgery. J Appl Clin Med Phys 2023; 24 (10) e14072
- 114 Neve OM, Chen Y, Tao Q. et al. Fully automated 3D vestibular schwannoma segmentation with and without gadolinium-based contrast material: a multicenter, multivendor study. Radiol Artif Intell 2022; 4 (04) e210300
- 115 Ye N, Yang Q, Liu P, Chen Z, Li X. A comprehensive machine-learning model applied to MRI to classify germinomas of the pineal region. Comput Biol Med 2023; 152: 106366
- 116 Taylor A, Habib AR, Kumar A, Wong E, Hasan Z, Singh N. An artificial intelligence algorithm for the classification of sphenoid sinus pneumatisation on sinus computed tomography scans. Clin Otolaryngol 2023; 48 (06) 888-894
- 117 Park SH, Choi DM, Jung IH. et al. Clinical application of deep learning-based synthetic CT from real MRI to improve dose planning accuracy in Gamma Knife radiosurgery: a proof of concept study. Biomed Eng Lett 2022; 12 (04) 359-367
- 118 Ammari S, Bône A, Balleyguier C. et al. Can deep learning replace gadolinium in neuro-oncology? A reader study. Invest Radiol 2022; 57 (02) 99-107
- 119 Vakharia VN, Toescu S, Copp AJ, Thompson DNP. A topographical analysis of encephalocele locations: generation of a standardised atlas and cluster analysis. Childs Nerv Syst 2023; 39 (07) 1911-1920
- 120 Wang C, You L, Zhang X. et al. A radiomics-based study for differentiating parasellar cavernous hemangiomas from meningiomas. Sci Rep 2022; 12 (01) 15509
- 121 Ghosh A, Malla SR, Bhalla AS, Manchanda S, Kandasamy D, Kumar R. Texture analysis of routine T2 weighted fat-saturated images can identify head and neck paragangliomas - a pilot study. Eur J Radiol Open 2020; 7: 100248
- 122 Shi Y, Wang H, Ji H. et al. A deep weakly semi-supervised framework for endoscopic lesion segmentation. Med Image Anal 2023; 90: 102973
- 123 Shafai-Erfani G, Lei Y, Liu Y. et al. MRI-based proton treatment planning for base of skull tumors. Int J Part Ther 2019; 6 (02) 12-25
- 124 Lambin P, Leijenaar RTH, Deist TM. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14 (12) 749-762
- 125 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015; 350: g7594