RSS-Feed abonnieren

DOI: 10.1055/a-2444-3422
Neutrophil Extracellular Traps (NETs) as a Potential Target for Anti-Aging: Role of Therapeutic Apheresis
Autoren
Gefördert durch: TransCampus S2B: project D9
Abstract
Neutrophil extracellular traps (NETs) are large structures composed of chromatin, histones and granule-derived proteins released extracellularly by neutrophils. They are generally considered to be a part of the antimicrobial defense strategy, preventing the dissemination of pathogens. However, overproduction of NETs or their ineffective clearance can drive various pathologies, many of which are associated with advanced age and involve uncontrolled inflammation, oxidative, cardiovascular and neurodegenerative stress as underlying mechanisms. Targeting NETs in the elderly as an anti-aging therapy seems to be a very attractive therapeutic approach. Therapeutic apheresis with a specific filter to remove NETs could be a promising strategy worth considering.
Publikationsverlauf
Eingereicht: 10. Juli 2024
Angenommen nach Revision: 20. August 2024
Artikel online veröffentlicht:
09. Januar 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Thiam HR, Wong SL, Wagner DD. et al. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol 2020; 36: 191-218
- 2 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532-1535
- 3 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18: 134-147
- 4 Lood C, Blanco LP, Purmalek MM. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016; 22: 146-153
- 5 Yipp BG, Kubes P. NETosis: how vital is it?. Blood 2013; 122: 2784-2794
- 6 Branzk N, Lubojemska A, Hardison SE. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 2014; 15: 1017-1025
- 7 Metzler KD, Goosmann C, Lubojemska A. et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 2014; 8: 883-896
- 8 Saitoh T, Komano J, Saitoh Y. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012; 12: 109-116
- 9 Secundino I, Lizcano A, Roupe KM. et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl) 2016; 94: 219-233
- 10 Khatua B, Bhattacharya K, Mandal C. Sialoglycoproteins adsorbed by Pseudomonas aeruginosa facilitate their survival by impeding neutrophil extracellular trap through siglec-9. J Leukoc Biol 2012; 91: 641-655
- 11 Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin?. J Cell Biol 2012; 198: 773-783
- 12 Pires RH, Felix SB, Delcea M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale 2016; 8: 14193-14202
- 13 North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 2012; 110: 1097-1108
- 14 Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med 2010; 362: 329-344
- 15 Raisz LG. Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 1988; 318: 818-828
- 16 de Magalhaes JP. How ageing processes influence cancer. Nat Rev Cancer 2013; 13: 357-365
- 17 Gunasekaran U, Gannon M. Type 2 diabetes and the aging pancreatic beta cell. Aging (Albany NY) 2011; 3: 565-575
- 18 Nalysnyk L, Cid-Ruzafa J, Rotella P. et al. Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. Eur Respir Rev 2012; 21: 355-361
- 19 Kwon YH, Fingert JH, Kuehn MH. et al. Primary open-angle glaucoma. N Engl J Med 2009; 360: 1113-1124
- 20 Yuan Q, Wang H, Gao P. et al. Prevalence and risk factors of metabolic-associated fatty liver disease among 73,566 individuals in Beijing, China. Int J Environ Res Public Health 2022; 19: 2096
- 21 Martinod K, Witsch T, Erpenbeck L. et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med 2017; 214: 439-458
- 22 Van Bruggen S, Kraisin S, Van Wauwe J. et al. Neutrophil peptidylarginine deiminase 4 is essential for detrimental age-related cardiac remodelling and dysfunction in mice. Philos Trans R Soc Lond B Biol Sci 2023; 378: 20220475
- 23 Sabbatini M, Bona E, Novello G. et al. Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin Exp Res 2022; 34: 2345-2353
- 24 Moreno de Lara L, Werner A, Borchers A. et al. Aging dysregulates neutrophil extracellular trap formation in response to HIV in blood and genital tissues. Front Immunol 2023; 14: 1256182
- 25 Xu F, Zhang C, Zou Z. et al. Aging-related Atg5 defect impairs neutrophil extracellular traps formation. Immunology 2017; 151: 417-432
- 26 Hazeldine J, Harris P, Chapple IL. et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell 2014; 13: 690-698
- 27 Wang Y, Wang W, Wang N. et al. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler Thromb Vasc Biol 2017; 37: e99-e107
- 28 Binet F, Cagnone G, Crespo-Garcia S. et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science 2020; 369: eaay5356
- 29 Woo SJ, Ahn SJ, Ahn J. et al. Elevated systemic neutrophil count in diabetic retinopathy and diabetes: a hospital-based cross-sectional study of 30,793 Korean subjects. Invest Ophthalmol Vis Sci 2011; 52: 7697-7703
- 30 Chung JO, Park SY, Cho DH. et al. Plasma neutrophil gelatinase-associated lipocalin levels are positively associated with diabetic retinopathy in patients with Type 2 diabetes. Diabet Med 2016; 33: 1649-1654
- 31 Li G, Veenstra AA, Talahalli RR. et al. Marrow-derived cells regulate the development of early diabetic retinopathy and tactile allodynia in mice. Diabetes 2012; 61: 3294-3303
- 32 Veenstra AA, Tang J, Kern TS. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy. PLoS One 2013; 8: e78405
- 33 He XY, Gao Y, Ng D. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024; 42: 474-486 e412
- 34 Saffarzadeh M, Juenemann C, Queisser MA. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7: e32366
- 35 Villanueva E, Yalavarthi S, Berthier CC. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187: 538-552
- 36 Thomas GM, Carbo C, Curtis BR. et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 2012; 119: 6335-6343
- 37 Gu C, Pang B, Sun S. et al. Neutrophil extracellular traps contributing to atherosclerosis: From pathophysiology to clinical implications. Exp Biol Med (Maywood) 2023; 248: 1302-1312
- 38 Thakur M, Junho CVC, Bernhard SM. et al. NETs-induced thrombosis impacts on cardiovascular and chronic kidney disease. Circ Res 2023; 132: 933-949
- 39 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107: 15880-15885
- 40 Cedervall J, Herre M, Dragomir A. et al. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology 2022; 11: 2049487
- 41 Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA. et al. Neutrophil extracellular traps (NETs) and covid-19: a new frontiers for therapeutic modality. Int Immunopharmacol 2022; 104: 108516
- 42 Park JS, Jeon J, Um J. et al. Magnitude and duration of serum neutralizing antibody titers induced by a third mRNA COVID-19 vaccination against omicron BA.1 in older individuals. Infect Chemother 2023; 56: 25-36
- 43 Kumar S, Payal N, Srivastava VK. et al. Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta 2021; 523: 152-162
- 44 Poon I, Baxter AA, Lay FT. et al. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 2014; 3: e01808
- 45 Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710-720
- 46 Kawabata K, Hagio T, Matsuoka S. The role of neutrophil elastase in acute lung injury. Eur J Pharmacol 2002; 451: 1-10
- 47 Chirivi RGS, van Rosmalen JWG, van der Linden M. et al. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol 2021; 18: 1528-1544
- 48 Wong SL, Demers M, Martinod K. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 2015; 21: 815-819
- 49 Knight JS, Zhao W, Luo W. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 2013; 123: 2981-2993
- 50 Liang Y, Pan B, Alam HB. et al. Inhibition of peptidylarginine deiminase alleviates LPS-induced pulmonary dysfunction and improves survival in a mouse model of lethal endotoxemia. Eur J Pharmacol 2018; 833: 432-440
- 51 Biron BM, Chung CS, Chen Y. et al. PAD4 deficiency leads to decreased organ dysfunction and improved survival in a dual insult model of hemorrhagic shock and sepsis. J Immunol 2018; 200: 1817-1828
- 52 Liu Y, Carmona-Rivera C, Moore E. et al. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front Immunol 2018; 9: 1680
- 53 Martinod K, Demers M, Fuchs TA. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 2013; 110: 8674-8679
- 54 Chumanevich AA, Causey CP, Knuckley BA. et al. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am J Physiol Gastrointest Liver Physiol 2011; 300: G929-G938
- 55 Seri Y, Shoda H, Suzuki A. et al. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model. Sci Rep 2015; 5: 13041
- 56 Gollomp K, Kim M, Johnston I. et al. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight 2018; 3: e99445
- 57 Raup-Konsavage WM, Wang Y, Wang WW. et al. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int 2018; 93: 365-374
- 58 Savchenko AS, Borissoff JI, Martinod K. et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 2014; 123: 141-148
- 59 Knight JS, Luo W, O'Dell AA. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114: 947-956
- 60 Franck G, Mawson TL, Folco EJ. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123: 33-42
- 61 Gordon RA, Herter JM, Rosetti F. et al. Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight 2017; 2: e92926
- 62 Ge L, Zhou X, Ji WJ. et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 2015; 308: H500-H509
- 63 Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun 2018; 10: 414-421
- 64 Abrams ST, Zhang N, Manson J. et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 2013; 187: 160-169
- 65 Xu J, Zhang X, Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15: 1318-1321
- 66 Lefrancais E, Mallavia B, Zhuo H. et al. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018; 3: e98178
- 67 Impellizzieri D, Ridder F, Raeber ME. et al. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J Allergy Clin Immunol 2019; 144: 267-279 e264
- 68 Shirakawa K, Sano M. Neutrophils and neutrophil extracellular traps in cardiovascular disease: an overview and potential therapeutic approaches. Biomedicines 2022; 10: 1850
- 69 Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf 2017; 16: 411-419
- 70 Kyburz D, Brentano F, Gay S. Mode of action of hydroxychloroquine in RA-evidence of an inhibitory effect on toll-like receptor signaling. Nat Clin Pract Rheumatol 2006; 2: 458-459
- 71 Hahn S, Giaglis S, Chowdhury CS. et al. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 2013; 35: 439-453
- 72 Zhang S, Zhang Q, Wang F. et al. Hydroxychloroquine inhibiting neutrophil extracellular trap formation alleviates hepatic ischemia/reperfusion injury by blocking TLR9 in mice. Clin Immunol 2020; 216: 108461
- 73 Snoderly HT, Boone BA, Bennewitz MF. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res 2019; 21: 145
- 74 Huang J, Hong W, Wan M. et al. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (2020) 2022; 3: e162
- 75 Shirakawa K, Kobayashi E, Ichihara G. et al. H(2) Inhibits the formation of neutrophil extracellular traps. JACC Basic Transl Sci 2022; 7: 146-161
- 76 Radermecker C, Sabatel C, Vanwinge C. et al. Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol 2019; 20: 1444-1455
- 77 Hodgman MJ, Garrard AR. A review of acetaminophen poisoning. Crit Care Clin 2012; 28: 499-516
- 78 Dekhuijzen PN, van Beurden WJ. The role for N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1: 99-106
- 79 Aruoma OI, Halliwell B, Hoey BM. et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6: 593-597
- 80 Aldini G, Altomare A, Baron G. et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 2018; 52: 751-762
- 81 Zawrotniak M, Kozik A, Rapala-Kozik M. Selected mucolytic, anti-inflammatory and cardiovascular drugs change the ability of neutrophils to form extracellular traps (NETs). Acta Biochim Pol 2015; 62: 465-473
- 82 Craver BM, Ramanathan G, Hoang S. et al. N-acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv 2020; 4: 312-321
- 83 Tauber SC, Nau R. Immunomodulatory properties of antibiotics. Curr Mol Pharmacol 2008; 1: 68-79
- 84 Manda-Handzlik A, Bystrzycka W, Sieczkowska S. et al. Antibiotics modulate the ability of neutrophils to release neutrophil extracellular traps. Adv Exp Med Biol 2017; 944: 47-52
- 85 Bystrzycka W, Manda-Handzlik A, Sieczkowska S. et al. Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int J Mol Sci 2017; 18: 2666
- 86 Petretto A, Bruschi M, Pratesi F. et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One 2019; 14: e0218946
- 87 Vargas A, Boivin R, Cano P. et al. Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma. Respir Res 2017; 18: 207
