CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd
DOI: 10.1055/a-2499-9856
GebFra Science
Original Article

The Role of Microcirculatory Dysfunction During Paclitaxel Treatment as a Critical Co-Factor for the Development of Chemotherapy-Induced Peripheral Neuropathy

Die Rolle der mikrozirkulatorischen Dysfunktion während der Paclitaxel-Therapie als wichtiger Kofaktor für die Entwicklung einer chemotherapieinduzierten peripheren Neuropathie
Susanne Reuter
1   Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
2   Department for Gynecology, University Medical Center Hamburg – Eppendorf, Hamburg, Germany (Ringgold ID: RIN37734)
,
Rika Bajorat
3   Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
,
Fabian Müller-Graf
3   Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
,
Amelie R. Zitzmann
3   Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
,
Volkmar Müller
2   Department for Gynecology, University Medical Center Hamburg – Eppendorf, Hamburg, Germany (Ringgold ID: RIN37734)
,
Anna-Lena Pickhardt
1   Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
,
Daniel A. Reuter
3   Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
,
Stephan H. Böhm
3   Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
,
Brigitte Vollmar
1   Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany (Ringgold ID: RIN39071)
› Author Affiliations

Supported by: Medical Research Council of University Medical Center Rostock grant no. 889043

Abstract

Background

Chemotherapy-induced peripheral neuropathy (CIPN) has a lasting impact on quality of life with a high prevalence and the lack of preventive and causal treatment options. In addition, they are often dose-limiting for curative and palliative oncological therapy. The aim of this study was to systematically investigate the occurrence of paclitaxel-induced peripheral microcirculatory dysfunction and its potential impact on peripheral neuropathy using an experimental in vivo approach.

Methods

77 female 8-week-old mice were randomly assigned into three groups. Each group was exposed to the following intraperitoneal interventions in a blinded fashion: The therapy group was treated with six cycles of paclitaxel. In the control group, mice received six cycles of saline solution. In the vehicle group, animals received six cycles of cremophor. Various microscopic, neurological and biochemical analyses were performed to assess the effects on peripheral nerve function, microcirculation and inflammation.

Results

Von Frey’s neurological test showed a progressive peripheral neuropathy with a significant change in the sensitivity in the sense of hypesthesia of the hind paws in mice treated with paclitaxel. Beside signs of systemic inflammation, intravital microscopic analysis showed a significant reduction in functional capillary density, increased venular leukocyte adherence and endothelial permeability in the paclitaxel-treated mice compared to the control groups. In addition, serological tests and histopathological examinations underlined the paclitaxel-induced inflammation and nerve damage as well as the disturbance of the microcirculation.

Conclusion

The presented findings suggest that paclitaxel-induced microcirculatory disturbances may contribute to the development and severity of CIPN, highlighting the importance of considering microvascular and inflammatory mechanisms in the pathogenesis and management of chemotherapy-induced neuropathy.

Zusammenfassung

Hintergrund

Eine chemotherapieinduzierte periphere Neuropathie (CIPN) kann sich nachhaltig auf die Lebensqualität auswirken und ist mit einer hohen Prävalenz und einem Mangel an vorbeugenden und kausalen Behandlungsmöglichkeiten verbunden. Dazu kommt noch, dass sie nicht selten dosislimitierend ist für kurative und palliative onkologische Therapien. Ziel dieser Studie war die systematische Untersuchung des Auftretens einer Paclitaxel-induzierten peripheren mikrozirkulatorischen Dysfunktion und deren potenzieller Auswirkungen auf die periphere Neuropathie in einem experimentellen In-vivo-Tierversuch.

Methoden

Es wurden 77 weibliche 8 Wochen alte Mäuse in 3 Gruppen randomisiert. Es handelte sich dabei um eine Doppelblindstudie. Jede Gruppe wurde einer der folgenden intraperitonealen Interventionen ausgesetzt: Die Therapiegruppe erhielt 6 Zyklen mit Paclitaxel. Die Mäuse der Kontrollgruppe erhielten 6 Zyklen einer Kochsalzlösung. In der Vehikel-Kontrollgruppe erhielten die Tiere 6 Zyklen mit Cremophor. Verschiedene mikroskopische, neurologische und biochemische Analysen wurden durchgeführt, um die Auswirkungen auf die peripheren Nervenfunktionen, Mikrozirkulation und Inflammation zu evaluieren.

Ergebnisse

Die klinisch-neurologische Sensibilitätsprüfung zeigte eine progressive periphere Neuropathie mit signifikanten Sensibilitätsstörungen (Hypästhesien) der Hinterpfoten bei den mit Paclitaxel behandelten Mäusen. Neben Anzeichen einer systemischen Entzündung fanden intravitale mikroskopische Analysen auch eine signifikante Verringerung der funktionellen Kapillardichte, eine Zunahme der Leukozytenadhäsion in den Venolen und eine erhöhte endotheliale Durchlässigkeit in den mit Paclitaxel behandelten Mäusen verglichen mit den Kontrollgruppen. Auch die serologischen Tests und histopathologischen Untersuchungen wiesen Paclitaxel-induzierte Entzündungen und Nervenschädigungen sowie Störungen der Mikrozirkulation nach.

Schlussfolgerung

Die dargelegten Ergebnisse zeigen, dass Paclitaxel-induzierte mikrozirkulatorische Störungen zur Entwicklung und Schwere einer CIPN beitragen können. Damit wird auch klar, wie wichtig die Beachtung von mikrovaskulären und entzündlichen Mechanismen bei der Pathogenese und dem Management einer chemotherapieinduzierten Neuropathie ist.



Publication History

Received: 29 August 2024

Accepted after revision: 30 November 2024

Article published online:
17 March 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Lustberg MB, Kuderer NM, Desai A. et al. Mitigating long-term and delayed adverse events associated with cancer treatment: implications for survivorship. Nat Rev Clin Oncol 2023; 20: 527-542
  • 2 Salat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72: 486-507
  • 3 Stubblefield MD, Burstein HJ, Burton AW. et al. NCCN task force report: Management of neuropathy in cancer. J Natl Compr Canc Netw 2009; 7: 1-26
  • 4 Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies—a growing problem for patients and health care providers. Brain Behav 2016; 7: e00558
  • 5 Fallon MT. Neuropathic pain in cancer Br. J Anaesth 2013; 111: 105-111
  • 6 Cioroiu C, Weimer LH. Update on chemotherapy-induced peripheral neuropathy. Curr Neurol Neurosci Rep 2017; 17: 47
  • 7 Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2017; 119: 737-749
  • 8 Seretny M, Currie GL, Sena ES. et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014; 155: 2461-2470
  • 9 Bae EH, Greenwald MK, Schwartz AG. Chemotherapy-Induced Peripheral Neuropathy: Mechanisms and Therapeutic Avenues. Neurotherapeutics 2021; 18: 2384-2396
  • 10 D’Souza RS, Alvarez GAM, Dombovy-Johnson M. et al. Evidence-Based Treatment of Pain in Chemotherapy-Induced Peripheral Neuropathy. Curr Pain Headache Rep 2023; 27: 99-116
  • 11 Inyang KE, McDougal TA, Ramirez ED. et al. Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiol Pain 2019; 6: 100037
  • 12 Maihöfner C, Diel I, Tesch H. et al. Chemotherapy-induced peripheral neuropathy (CIPN): current therapies and topical treatment option with high-concentration capsaicin. Support Care Cancer 2021; 29: 4223-4238
  • 13 Boehmerle W, Huehnchen P, Endres M. Chemotherapie-induzierte Neuropathien. Nervenarzt 2015; 86: 156-160
  • 14 Boyette-Davis JA, Hou S, Abdi S. et al. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag 2018; 8: 363-437
  • 15 Argyriou AA, Bruna J, Marmiroli P. et al. Chemotherapy-induced peripheral neurotoxicity (CIPN): An update. Crit Rev Oncol Hematol 2012; 82: 51-77
  • 16 Bernhardson BM, Tishelman C, Rutqvist LE. Chemosensory changes experienced by patients undergoing cancer chemotherapy: A qualitative interview study. J Pain Symptom Manag 2007; 34: 403-412
  • 17 Gornstein EL, Schwarz TL. Neurotoxic Mechanisms of Paclitaxel Are Local to the Distal Axon and Independent of Transport Defects. Exp Neurol 2017; 288: 153-166
  • 18 Areti A, Yerra VG, Naidu VGM. et al. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol 2014; 2: 289-295
  • 19 Malacrida A, Meregalli C, Rodriguez-Menendez V. et al. Chemotherapy-induced peripheral neuropathy and changes in cytoskeleton. Int J Mol Sci 2019; 20: 2287
  • 20 Colvin LA. Chemotherapy-induced peripheral neuropathy (CIPN): where are we now?. Pain 2019; 160 (Suppl. 1) S1-S10
  • 21 Staff NP, Grisold A, Grisold W. et al. Chemotherapy-Induced Peripheral Neuropathy: A Current Review. Ann Neurol 2017; 81: 772-781
  • 22 Hershman DL, Lacchetti C, Loprinzi CL. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Oncol Pract 2014; 10: e421-e424
  • 23 Hershman DL, Weimer LH, Wang A. et al. Association between patient reported outcomes and qualitative sensory test for measuring long-term neurotoxicity in breast cancer survivors treated with adjuvant paclitaxel chemotherapy. Breast Cancer Res Treat 2011; 125: 767-774
  • 24 Jones D, Zhao F, Brell J. et al. Neuropathic symptoms, quality of life, and clinician perception of patient care in medical oncology outpatients with colorectal, breast, lung, and prostate cancer. J Cancer Surviv 2015; 9: 1-10
  • 25 Gadgil S, Ergün M, van den Heuvel SA. et al. A systematic summary and comparison of animal models for chemotherapy induced (peripheral) neuropathy (CIPN). PLoS One 2019; 14: e0221787
  • 26 Zaks-Zilberman M, Zaks TZ, Vogel SN. Induction of proinflammatory and chemokine genes by lipopolysaccharide and paclitaxel (Taxol) in murine and human breast cancer cell lines. Cytokine 2001; 15: 156-165
  • 27 Carden DL, Granger DN. Pathophysiology of ischemia-reperfusion injury. J Pathol 2000; 190: 255-266
  • 28 Chan A, Hertz DL, Morales M. et al. Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer 2019; 27: 3729-3737
  • 29 Granger DN, Rodrigues SF. Microvascular Responses to Inflammation. In: Parnham MJ. , ed. Compendium of Inflammatory Diseases. Basel: Springer; 2016.
  • 30 Granger DN, Senchenkova E. Inflammation and the Microcirculation. San Rafael (CA): Morgan & Claypool Life Sciences; 2010
  • 31 Mallat J, Rahman N, Hamed F. et al. Pathophysiology, mechanisms, and managements of tissue hypoxia. Anaesth Crit Care Pain Med 2022; 41: 101087
  • 32 Barker JH, Hammersen F, Bondàr I. et al. The hairless mouse ear for in vivo studies of skin microcirculation. Plast Reconstr Surg 1989; 83: 948-959
  • 33 Eriksson E, Boykin JV, Pittman RN. Method for in vivo microscopy of the cutaneous microcirculation of the hairless mouse ear. Microvasc Res 1980; 19: 374-379
  • 34 Chaplan SR, Bach FW, Pogrel JW. et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55-63
  • 35 Gradl G, Finke B, Schattner S. et al. Continuous intra-arterial application of Substance P induces signs and symptoms of experimental complex regional pain syndrome (CRPS) such as edema, inflammation and mechanical pain but no thermal pain. Neuroscience 2007; 148: 757-765
  • 36 Klyscz T, Jünger M, Jung F. et al. Cap image--a new kind of computer-assisted video image analysis system for dynamic capillary microscopy. Biomed Tech (Berl) 1997; 42: 168-175
  • 37 Panés J, Perry M, Granger DN. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 1999; 126: 537-550
  • 38 Vollmar B, El-Gibaly AM, Scheuer C. et al. Acceleration of cutaneous wound healing by transient p53 inhibition. Lab Invest 2002; 82: 1063-1071
  • 39 Vollmar B, Morgenthaler M, Amon M. et al. Skin microvascular adaptations during maturation and aging of hairless mice. Am J Physiol Heart Circ Physiol 2000; 279: H1591-H1599
  • 40 Carr MW, Roth SJ, Luther E. et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 1994; 91: 3652-3656
  • 41 Deshmane SL, Kremlev S, Amini S. et al. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29: 313-326
  • 42 Evers TM, Sheikhhassani V, Haks MC. et al. Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics. iScience 2022; 25: 103555
  • 43 Maurer M, von Stebut E. Macrophage inflammatory protein-1. Int J Biochem Cell Biol 2004; 36: 1882-1886
  • 44 Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 2002; 13: 455-481
  • 45 Sima AA, Zhang W, Sugimoto K. et al. C-peptide prevents and improves chronic Type I diabetic polyneuropathy in the BB/Wor rat. Diabetologia 2001; 44: 889-897
  • 46 Cavaletti G, Pizzamiglio C, Man A. et al. Studies to Assess the Utility of Serum Neurofilament Light Chain as a Biomarker in Chemotherapy-Induced Peripheral Neuropathy. Cancers (Basel) 2023; 15: 4216
  • 47 Klein I, Wiesen MHJ, Albert V. et al. Impact of drug formulations on kinetics and toxicity in a preclinical model of paclitaxel-induced neuropathy. J Peripher Nerv Syst 2021; 26: 216-226
  • 48 Crowe AR, Yue W. Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc 2019; 9: e3465
  • 49 Creppe C, Malinouskaya L, Volvert ML. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 2009; 136: 551-564
  • 50 Lenth RV. Statistical power calculations. J Anim Sci 2007; 85: E24-E29
  • 51 Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother 2002; 3: 755-766
  • 52 Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med 1995; 332: 1004-1014
  • 53 Toma W, Kyte SL, Bagdas D. et al. Effects of paclitaxel on the development of neuropathy and affective behaviors in the mouse. Neuropharmacology 2017; 117: 305-315
  • 54 Imai S, Koyanagi M, Azimi Z. et al. Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci Rep 2017; 7: 5947
  • 55 Aso Y, Inukai T, Takemura Y. Evaluation of skin vasomotor reflexes in response to deep inspiration in diabetic patients by laser Doppler flowmetry. A new approach to the diagnosis of diabetic peripheral autonomic neuropathy. Diabetes Care 1997; 20: 1324-1328
  • 56 Lefrandt JD, Bosma E, Oomen PH. et al. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy. Diabetologia 2003; 46: 40-47
  • 57 Galán-Arriola C, Vílchez-Tschischke JP, Lobo M. et al. Coronary microcirculation damage in anthracycline cardiotoxicity. Cardiovasc Res 2022; 118: 531-541
  • 58 Fernandez-Fernandez A, Carvajal DA, Lei T. et al. Chemotherapy-induced changes in cardiac capillary permeability measured by fluorescent multiple indicator dilution. Ann Biomed Eng 2014; 42: 2405-2415
  • 59 Todorova VK, Hsu PC, Wei JY. et al. Biomarkers of inflammation, hypercoagulability andendothelial injury predict early asymptomatic doxorubicin-induced cardiotoxicity in breast cancer patients. Am J Cancer Res 2020; 10: 2933-2945
  • 60 Wang CY, Lin TT, Hu L. et al. Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90: 104499
  • 61 Peterson ER, Crain SM. Nerve growth factor attenuates neurotoxic effects of Taxol on spinal cord-ganglion explants from fetal mice. Science 1982; 217: 377-379
  • 62 Wiernik PH, Schwartz EL, Strauman JJ. et al. Phase I clinical and pharmacokinetic study of taxol. Cancer Res 1987; 47: 2486-2493
  • 63 Vassilakopoulou M, Mountzios G, Papamechael C. et al. Paclitaxel chemotherapy and vascular toxicity as assessed by flow-mediated and nitrate-mediated vasodilatation. Vascul Pharmacol 2010; 53: 115-121
  • 64 Kalogeris T, Baines CP, Krenz M. et al. Ischemia/Reperfusion. Compr Physiol 2016; 7: 113-170
  • 65 Thacker MA, Clark AK, Marchand F. et al. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 2007; 105: 838-847
  • 66 Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021; 101: 107598
  • 67 Azoulay D, Leibovici A, Sharoni R. et al. Association between met-BDNF allele and vulnerability to paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 2015; 153: 703-704
  • 68 Meregalli C, Fumagalli G, Alberti P. et al. Neurofilament light chain as disease biomarker in a rodent model of chemotherapy induced peripheral neuropathy. Exp Neurol 2018; 307: 129-132
  • 69 Meregalli C, Fumagalli G, Alberti P. et al. Neurofilament light chain: a specific serum biomarker of axonal damage severity in rat models of Chemotherapy-Induced Peripheral Neurotoxicity. Arch Toxicol 2020; 94: 2517-2522
  • 70 Huehnchen P, Schinke C, Bangemann N. et al. Neurofilament proteins as a potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022; 7: e154395
  • 71 Park SB, Cetinkaya-Fisgin A, Argyriou AA. et al. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: clinical and experimental evidence. J Neurol Neurosurg Psychiatry 2023; 94: 962-972
  • 72 Carter TK, Hallam TJ, Cusack NJ. et al. Regulation of P2y purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br J Pharmacol 1988; 95: 1181-1190
  • 73 Jaffe EA, Grulich J, Weksler BB. et al. Correlation between thrombin-induced prostacyclin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells. J Biol Chem 1987; 262: 8557-8565
  • 74 Aromolaran AK, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy. Mol Pain 2017; 13: 1744806917714693
  • 75 Lohman BR, Jordan KR, Bailey MT. et al. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci Rep 2019; 9: 16490
  • 76 McCarthy AL, Shaban RZ, Gillespie K. et al. Cryotherapy for docetaxel-induced hand and nail toxicity: randomised control trial. Support Care Cancer 2014; 22: 1375-1383
  • 77 Ohno T, Mine T, Yoshioka H. et al. Management of peripheral neuropathy induced by nab-paclitaxel treatment for breast cancer. Anticancer Res 2014; 34: 4213-4216