Subscribe to RSS
DOI: 10.1055/a-2516-3176
Is there a need for a CT scan of the pancreatic phase? A perfusion and simulation study of the pancreas, an HCC, and the kidney cortex
Ist eine CT-Untersuchung der Pankreasphase erforderlich? Eine Perfusions- und Simulationsstudie an Pankreas, HCC und Nierenrinde
Abstract
Purpose
To explore the peak enhancement time of a hepatocellular carcinoma, the pancreas, and the kidney cortex and its determinants.
Materials and Methods
We obtained a time enhancement curve from the perfusion CT scans of 11 advanced HCC patients (40 volumes at 1.25 s time interval, slab slice 90 mm, bolus of 50 ml of iodinated contrast agent, 350 g iodine/ml, flow 5 ml/s). Small regions of interest were drawn on the abdominal aorta, the HCC, the cortex of the right kidney, and on the pancreas. The behavior of the contrast agent in the capillary and in the surrounding tissue was further explored with a finite element model.
Results
The peak enhancement time of the pancreas did not differ from that of the HCC (10±3 vs. 11±4 s, p=0.9), while the peak enhancement time of the kidney tended to be a few seconds earlier (8±1 s, p=0.082 vs. pancreas and p=0.069 vs. kidney). Simulation showed that the time span in which the tissue enhancement remained within 10% of its peak value was similar across all capillary densities and ranged between 26−38 s for a capillary density of 0.00125 per mm to 30–60 s for a capillary density of 0.01.
Conclusion
The plateau tissue enhancement clinically acquired in the “late arterial phase” should be adequate both for the detection of hypervascular liver lesions such as HCCs and for obtaining peak pancreatic enhancement to detect hypovascular lesions.
Key Points
-
The peak tissue enhancement time of an HCC, the pancreas, and the kidney cortex is similar
-
The tissue peak enhancement time in the arterial phase is at the end of bolus transit
-
Simulation shows that tissue enhancement peak time is a function of capillary density
Citation Format
-
Cressoni M, Cadringher P, Colarieti A et al. Is there a need for a CT scan of the pancreatic phase? A perfusion and simulation study of the pancreas, an HCC, and the kidney cortex. Rofo 2025; DOI 10.1055/a-2516-3176
Zusammenfassung
Zweck
Untersuchung der Spitzenkontrastverstärkungszeit von hepatozellulärem Karzinom, Pankreas und Nierenrinde sowie deren Einflussfaktoren.
Materialien und Methoden
Wir haben Zeit-Verstärkungskurven aus Perfusions-CT-Scans von 11 Patienten mit fortgeschrittenem HCC erhalten (40 Volumina in 1,25 s Intervallen, Schichtdicke 90 mm, Bolus von 50 ml jodhaltigem Kontrastmittel, 350 g Jod/ml, Flussrate 5 ml/s). Kleine Interessensregionen wurden auf der Bauchaorta, dem HCC, der Nierenrinde und dem Pankreas markiert. Das Verhalten des Kontrastmittels in den Kapillaren und im umliegenden Gewebe wurde weiter mit einem Finite-Elemente-Modell untersucht.
Ergebnisse
Die Spitzenkontrastverstärkungszeit des Pankreas unterschied sich nicht von der des HCC (10±3 vs 11±4 s, p=0.9), während die der Niere einige Sekunden früher zu liegen schien (8±1 s, p=0.082 vs. Pankreas und p=0.069 vs. Niere). Simulationen zeigten, dass der Zeitraum, in dem die Gewebekontrastverstärkung innerhalb von 10% ihres Spitzenwertes blieb, bei allen Kapillardichten ähnlich war: Er reichte von 26−38 s bei einer Kapillardichte von 0.00125/mm bis 30–60 s bei einer Kapillardichte von 0.01.
Schlussfolgerungen
Die klinisch in der „späten arteriellen Phase“ erworbene Gewebekontrastverstärkung sollte sowohl für die Erkennung hypervaskulärer Leberläsionen wie HCC als auch für die Erzielung der Spitzenkontrastverstärkung des Pankreas zur Erkennung hypovaskulärer Läsionen geeignet sein.
Kernaussagen
-
Die maximale Gewebeanreicherungszeit von HCC, Pankreas und Nierenrinde ist ähnlich
-
Die Gewebespitzenverstärkungszeit in der arteriellen Phase liegt am Ende des Bolustransports
-
Simulationen zeigen, dass die Spitzenzeit der Gewebeverstärkung von der Kapillardichte abhängt
Keywords
contrast agents - pancreatic adenocarcinoma - computed tomography - arterial phase - hepatocarcinoma - perfusion imagingPublication History
Received: 16 November 2024
Accepted after revision: 09 January 2025
Article published online:
06 February 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010; 256: 32-61
- 2 Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 1998; 207: 647-655
- 3 Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 1998; 207: 657-662
- 4 Lu DSK, Vedantham S, Krasny RM. et al. Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology 1996; 199: 697-701
- 5 Clinical manifestations, diagnosis, and staging of exocrine pancreatic cancer – UpToDate n.d. Accessed May 10, 2023 at: https://www.uptodate.com/contents/clinical-manifestations-diagnosis-and-staging-of-exocrine-pancreatic-cancer?csi=6861090c-2baf-421a-acb5-ea5256a0b668&source=contentShare
- 6 Goshima S, Kanematsu M, Nishibori H. et al. CT of the pancreas: comparison of anatomic structure depiction, image quality, and radiation exposure between 320-detector volumetric images and 64-detector helical images. Radiology 2011; 260: 139-147
- 7 Rossi A, Merkus D, Klotz E. et al. Stress myocardial perfusion: imaging with multidetector CT. Radiology 2014; 270: 25-46
- 8 Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology 2014; 272: 322-344
- 9 Ippolito D, Querques G, Okolicsanyi S. et al. Dynamic contrast enhanced perfusion CT imaging: a diagnostic biomarker tool for survival prediction of tumour response to antiangiogenetic treatment in patients with advanced HCC lesions. Eur J Radiol 2018; 106: 62-68
- 10 Cressoni M, Cozzi A, Schiaffino S. et al. Computation of contrast-enhanced perfusion using only two CT scan phases: a proof-of-concept study on abdominal organs. Eur Radiol Exp 2022; 6: 37
- 11 Madsen MT. A simplified formulation of the gamma variate function. Phys Med Biol 1992; 37: 1597
- 12 Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 1919; 52: 409
- 13 Fowler JL, Lee SSY, Wesner ZC. et al. Three-Dimensional Analysis of the Human Pancreas. Endocrinology 2018; 159: 1393-1400
- 14 https://www.r-project.org
- 15 An C, Rakhmonova G, Choi JY. et al. Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm. Clin Mol Hepatol 2016; 22: 296-307
- 16 Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991; 17: 357-367
- 17 Brix G, Zwick S, Griebel J. et al. Estimation of tissue perfusion by dynamic contrast-enhanced imaging: simulation-based evaluation of the steepest slope method. Eur Radiol 2010; 20: 2166-2175
- 18 Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2010; 2
- 19 Cuenod CA, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 2013; 94: 1187-204
- 20 Prando A, Wallace S. Helical CT of prostate cancer: early clinical experience. AJR Am J Roentgenol 2000; 175: 343-346
- 21 Ives EP, Burke MA, Edmonds PR. et al. Quantitative computed tomography perfusion of prostate cancer: correlation with whole-mount pathology. Clin Prostate Cancer 2005; 4: 109-112
- 22 Padhani AR, Barentsz J, Villeirs G. et al. PI-RADS Steering Committee: The PI-RADS Multiparametric MRI and MRI-directed Biopsy Pathway. Radiology 2019; 292: 464-474
- 23 Ohta Y, Kitao S, Yunaga H. et al. Myocardial Delayed Enhancement CT for the Evaluation of Heart Failure: Comparison to MRI. Radiology 2018; 288: 682-691
- 24 Fletcher JG, Wiersema MJ, Farrell MA. et al. Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology 2003; 229: 81-90
- 25 Boland GW, O’Malley ME, Saez M. et al. Pancreatic-phase versus portal vein-phase helical CT of the pancreas: optimal temporal window for evaluation of pancreatic adenocarcinoma. AJR Am J Roentgenol 1999; 172: 605-608
- 26 Kim T, Murakami T, Hori M. et al. Small hypervascular hepatocellular carcinoma revealed by double arterial phase CT performed with single breath-hold scanning and automatic bolus tracking. AJR Am J Roentgenol 2002; 178: 899-904
- 27 Murakami T, Kim T, Takamura M. et al. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology 2001; 218: 763-767
- 28 Laghi A, Iannaccone R, Rossi P. et al. Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis. Radiology 2003; 226: 543-549
- 29 Hong S, Choi SH, Hong SB. et al. Clinical usefulness of multiple arterial-phase images in gadoxetate disodium-enhanced magnetic resonance imaging: a systematic review and meta-analysis. Eur Radiol 2022; 32: 5413-5423
- 30 Hatzidakis A, Perisinakis K, Kalarakis G. et al. Perfusion-CT analysis for assessment of hepatocellular carcinoma lesions: diagnostic value of different perfusion maps. Acta Radiol 2019; 60: 561-568