RSS-Feed abonnieren

DOI: 10.1055/a-2561-8818
Platelet Disorders and Medication Strategies
Authors
Funding This study was supported by grants from the National Natural Science Foundation of China (No. 82470135 and No. 82001026), and the program of National Key Research and Development Project of China (2023YFC2509500).

Abstract
Platelets are among the most abundant cells in the body and play important roles in coagulation and immunity. Platelets are formed when hematopoietic stem cells proliferate and differentiate into megakaryocytes via the regulation of various cytokines. After the megakaryocytes mature in the bone marrow cavity, proplatelets are released into the blood circulation where they eventually remodel into mature platelets. Given that the production and functions of platelets involve the regulation of many factors—such as hematopoietic stem cells, the hematopoietic microenvironment, and cytokines—the causes and mechanisms of platelet-related diseases are diverse, often involving platelet production, clearance, and distribution. In this review, we examined the regulation of platelet production and summarized common disorders affecting platelet quantity, namely, thrombocytopenia and thrombocytosis. In addition, we reviewed previous clinical studies and summarized the medication strategies commonly used for the treatment of different platelet disorders in different clinical scenarios.
* These authors contributed equally.
Publikationsverlauf
Eingereicht: 11. Dezember 2024
Angenommen: 14. März 2025
Accepted Manuscript online:
19. März 2025
Artikel online veröffentlicht:
07. Mai 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Brass LF, Diamond SL, Stalker TJ. Platelets and hemostasis: a new perspective on an old subject. Blood Adv 2016; 1 (01) 5-9
- 2 Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. Curr Trends Immunol 2015; 16: 65-78
- 3 Wolfromm A, Dallemagne J. [Management of thrombocytopenia]. Rev Med Brux 2018; 39 (04) 296-301
- 4 Daly ME. Determinants of platelet count in humans. Haematologica 2011; 96 (01) 10-13
- 5 Psaila B, Mead AJ. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood 2019; 133 (13) 1427-1435
- 6 Carrelha J, Meng Y, Kettyle LM. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018; 554 (7690) 106-111
- 7 Carminita E, Becker IC, Italiano JE. What it takes to be a platelet: evolving concepts in platelet production. Circ Res 2024; 135 (04) 540-549
- 8 Eckly A, Heijnen H, Pertuy F. et al. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood 2014; 123 (06) 921-930
- 9 Barrachina MN, Pernes G, Becker IC. et al. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. Nat Cardiovasc Res 2023; 2 (08) 746-763
- 10 Ellis ML, Terreaux A, Alwis I. et al. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143 (04) 342-356
- 11 Radley JM, Haller CJ. The demarcation membrane system of the megakaryocyte: a misnomer?. Blood 1982; 60 (01) 213-219
- 12 Scurfield G, Radley JM. Aspects of platelet formation and release. Am J Hematol 1981; 10 (03) 285-296
- 13 Bender M, Thon JN, Ehrlicher AJ. et al. Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 2015; 125 (05) 860-868
- 14 Becker IC, Wilkie AR, Unger BA. et al. Dynamic actin/septin network in megakaryocytes coordinates proplatelet elaboration. Haematologica 2024; 109 (03) 915-928
- 15 Brown E, Carlin LM, Nerlov C, Lo Celso C, Poole AW. Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Sci Alliance 2018; 1 (02) 1
- 16 Richardson JL, Shivdasani RA, Boers C, Hartwig JH, Italiano Jr JE. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 2005; 106 (13) 4066-4075
- 17 Spindler M, van Eeuwijk JMM, Schurr Y. et al. ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia. Blood 2018; 132 (06) 635-646
- 18 Dütting S, Gaits-Iacovoni F, Stegner D. et al. A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis. Nat Commun 2017; 8: 15838
- 19 Bornert A, Boscher J, Pertuy F. et al. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica 2021; 106 (05) 1368-1380
- 20 Asquith NL, Carminita E, Camacho V. et al. The bone marrow is the primary site of thrombopoiesis. Blood 2024; 143 (03) 272-278
- 21 Thon JN, Montalvo A, Patel-Hett S. et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 2010; 191 (04) 861-874
- 22 Valet C, Magnen M, Qiu L. et al. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J Clin Invest 2022; 132 (07) 132
- 23 Lefrançais E, Ortiz-Muñoz G, Caudrillier A. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544 (7648) 105-109
- 24 Ouzegdouh Y, Capron C, Bauer T. et al. The physical and cellular conditions of the human pulmonary circulation enable thrombopoiesis. Exp Hematol 2018; 63: 22-27.e3
- 25 Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev 2017; 16 (06) 620-632
- 26 Audia S, Rossato M, Santegoets K. et al. Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood 2014; 124 (18) 2858-2866
- 27 Kuwana M, Okazaki Y, Ikeda Y. Splenic macrophages maintain the anti-platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. J Thromb Haemost 2009; 7 (02) 322-329
- 28 Li S, Wang L, Zhao C, Li L, Peng J, Hou M. CD8+ T cells suppress autologous megakaryocyte apoptosis in idiopathic thrombocytopenic purpura. Br J Haematol 2007; 139 (04) 605-611
- 29 Li F, Ji L, Wang W. et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res 2015; 61 (03) 269-280
- 30 Sun T, Zhang D, Yang Y. et al. Interleukin 35 may contribute to the loss of immunological self-tolerance in patients with primary immune thrombocytopenia. Br J Haematol 2015; 169 (02) 278-285
- 31 Grozovsky R, Begonja AJ, Liu K. et al. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 2015; 21 (01) 47-54
- 32 Cuker A, Cataland SR, Coppo P. et al. Redefining outcomes in immune TTP: an international working group consensus report. Blood 2021; 137 (14) 1855-1861
- 33 Gómez-Seguí I, Pascual Izquierdo C, Mingot Castellano ME, de la Rubia Comos J. An update on the pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev Hematol 2023; 16 (01) 17-32
- 34 Zheng XL. ADAMTS13 and von Willebrand factor in thrombotic thrombocytopenic purpura. Annu Rev Med 2015; 66: 211-225
- 35 Roose E, Veyradier A, Vanhoorelbeke K. Insights into ADAMTS13 structure: impact on thrombotic thrombocytopenic purpura diagnosis and management. Curr Opin Hematol 2020; 27 (05) 320-326
- 36 Sadler JE. Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017; 130 (10) 1181-1188
- 37 Subhan M, Scully M. Advances in the management of TTP. Blood Rev 2022; 55: 100945
- 38 van Dorland HA, Taleghani MM, Sakai K. et al; Hereditary TTP Registry. The International Hereditary Thrombotic Thrombocytopenic Purpura Registry: key findings at enrollment until 2017. Haematologica 2019; 104 (10) 2107-2115
- 39 Hrdinová J, D'Angelo S, Graça NAG. et al. Dissecting the pathophysiology of immune thrombotic thrombocytopenic purpura: interplay between genes and environmental triggers. Haematologica 2018; 103 (07) 1099-1109
- 40 Velásquez Pereira LC, Roose E, Graça NAG. et al. Immunogenic hotspots in the spacer domain of ADAMTS13 in immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2021; 19 (02) 478-488
- 41 Fuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lämmle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120 (06) 1157-1164
- 42 Gauer RL, Whitaker DJ. Thrombocytopenia: evaluation and management. Am Fam Physician 2022; 106 (03) 288-298
- 43 Danese E, Montagnana M, Favaloro EJ, Lippi G. Drug-induced thrombocytopenia: mechanisms and laboratory diagnostics. Semin Thromb Hemost 2020; 46 (03) 264-274
- 44 Weycker D, Hatfield M, Grossman A. et al. Risk and consequences of chemotherapy-induced thrombocytopenia in US clinical practice. BMC Cancer 2019; 19 (01) 151
- 45 Trede NS, Warwick AB, Rosoff PM, Rohrer R, Bierer BE, Guinan E. Tacrolimus (FK506) in allogeneic bone marrow transplantation for severe aplastic anemia following orthotopic liver transplantation. Bone Marrow Transplant 1997; 20 (03) 257-260
- 46 Chang JK, Li CJ, Wu SC. et al. Effects of anti-inflammatory drugs on proliferation, cytotoxicity and osteogenesis in bone marrow mesenchymal stem cells. Biochem Pharmacol 2007; 74 (09) 1371-1382
- 47 Von Drygalski A, Curtis BR, Bougie DW. et al. Vancomycin-induced immune thrombocytopenia. N Engl J Med 2007; 356 (09) 904-910
- 48 Sulkowski MS, Cooper C, Hunyady B. et al. Management of adverse effects of Peg-IFN and ribavirin therapy for hepatitis C. Nat Rev Gastroenterol Hepatol 2011; 8 (04) 212-223
- 49 Giles JB, Martinez KL, Steiner HE. et al. Association of metal cations with the anti-PF4/heparin antibody response in heparin-induced thrombocytopenia. Cardiovasc Toxicol 2024; 24 (09) 968-981
- 50 Provan D, Arnold DM, Bussel JB. et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv 2019; 3 (22) 3780-3817
- 51 Mithoowani S, Gregory-Miller K, Goy J. et al. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia: a systematic review and meta-analysis. Lancet Haematol 2016; 3 (10) e489-e496
- 52 Frederiksen H, Ghanima W. Response of first line treatment with corticosteroids in a population-based cohort of adults with primary immune thrombocytopenia. Eur J Intern Med 2017; 37: e23-e25
- 53 Provan D, Stasi R, Newland AC. et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 2010; 115 (02) 168-186
- 54 Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood 2017; 129 (21) 2836-2846
- 55 Balduini CL, Gugliotta L, Luppi M. et al; Italian TTP Study Group. High versus standard dose methylprednisolone in the acute phase of idiopathic thrombotic thrombocytopenic purpura: a randomized study. Ann Hematol 2010; 89 (06) 591-596
- 56 Liu XG, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. J Hematol Oncol 2023; 16 (01) 4
- 57 Qin YH, Zhou TB, Su LN, Lei FY, Zhao YJ, Huang WF. The efficacy of different dose intravenous immunoglobulin in treating acute idiopathic thrombocytopenic purpura: a meta-analysis of 13 randomized controlled trials. Blood Coagul Fibrinolysis 2010; 21 (08) 713-721
- 58 Zhou Z, Qiao Z, Li H. et al. Different dosages of intravenous immunoglobulin (IVIg) in treating immune thrombocytopenia with long-term follow-up of three years: Results of a prospective study including 167 cases. Autoimmunity 2016; 49 (01) 50-57
- 59 Kovaleva L, Apte S, Damodar S. et al; investigators of the Flebogamma DIF in ITP Study Group. Safety and efficacy of a 10% intravenous immunoglobulin preparation in patients with immune thrombocytopenic purpura: results of two international, multicenter studies. Immunotherapy 2016; 8 (12) 1371-1381
- 60 Robak T, Salama A, Kovaleva L. et al; International Privigen in ITP Study Group. Efficacy and safety of Privigen, a novel liquid intravenous immunoglobulin formulation, in adolescent and adult patients with chronic immune thrombocytopenic purpura. Hematology 2009; 14 (04) 227-236
- 61 Go RS, Johnston KL, Bruden KC. The association between platelet autoantibody specificity and response to intravenous immunoglobulin G in the treatment of patients with immune thrombocytopenia. Haematologica 2007; 92 (02) 283-284
- 62 Peng J, Ma SH, Liu J. et al. Association of autoantibody specificity and response to intravenous immunoglobulin G therapy in immune thrombocytopenia: a multicenter cohort study. J Thromb Haemost 2014; 12 (04) 497-504
- 63 Gilreath J, Lo M, Bubalo J. Thrombopoietin receptor agonists (TPO-RAs): drug class considerations for pharmacists. Drugs 2021; 81 (11) 1285-1305
- 64 Afdhal NH, Giannini EG, Tayyab G. et al; ELEVATE Study Group. Eltrombopag before procedures in patients with cirrhosis and thrombocytopenia. N Engl J Med 2012; 367 (08) 716-724
- 65 González-López TJ, Fernández-Fuertes F, Hernández-Rivas JA. et al. Efficacy and safety of eltrombopag in persistent and newly diagnosed ITP in clinical practice. Int J Hematol 2017; 106 (04) 508-516
- 66 Yang R, Li J, Jin J. et al. Multicentre, randomised phase III study of the efficacy and safety of eltrombopag in Chinese patients with chronic immune thrombocytopenia. Br J Haematol 2017; 176 (01) 101-110
- 67 González-López TJ, Alvarez-Román MT, Pascual C. et al. Eltrombopag safety and efficacy for primary chronic immune thrombocytopenia in clinical practice. Eur J Haematol 2016; 97 (03) 297-302
- 68 Williams DD, Peng B, Bailey CK. et al. Effects of food and antacids on the pharmacokinetics of eltrombopag in healthy adult subjects: two single-dose, open-label, randomized-sequence, crossover studies. Clin Ther 2009; 31 (04) 764-776
- 69 Bussel JB, Kuter DJ, Aledort LM. et al. A randomized trial of avatrombopag, an investigational thrombopoietin-receptor agonist, in persistent and chronic immune thrombocytopenia. Blood 2014; 123 (25) 3887-3894
- 70 Jurczak W, Chojnowski K, Mayer J. et al. Phase 3 randomised study of avatrombopag, a novel thrombopoietin receptor agonist for the treatment of chronic immune thrombocytopenia. Br J Haematol 2018; 183 (03) 479-490
- 71 Nomoto M, Pastino G, Rege B, Aluri J, Ferry J, Han D. Pharmacokinetics, pharmacodynamics, pharmacogenomics, safety, and tolerability of avatrombopag in healthy Japanese and white subjects. Clin Pharmacol Drug Dev 2018; 7 (02) 188-195
- 72 Al-Samkari H, Kuter DJ. Optimal use of thrombopoietin receptor agonists in immune thrombocytopenia. Ther Adv Hematol 2019; 10: 2040620719841735
- 73 Cines DB, Wasser J, Rodeghiero F. et al. Safety and efficacy of romiplostim in splenectomized and nonsplenectomized patients with primary immune thrombocytopenia. Haematologica 2017; 102 (08) 1342-1351
- 74 Janssens A, Tarantino M, Bird RJ. et al. Romiplostim treatment in adults with immune thrombocytopenia of varying duration and severity. Acta Haematol 2015; 134 (04) 215-228
- 75 Vishnu P, Aboulafia DM. Long-term safety and efficacy of romiplostim for treatment of immune thrombocytopenia. J Blood Med 2016; 7: 99-106
- 76 Chugh S, Darvish-Kazem S, Lim W. et al. Rituximab plus standard of care for treatment of primary immune thrombocytopenia: a systematic review and meta-analysis. Lancet Haematol 2015; 2 (02) e75-e81
- 77 Khellaf M, Charles-Nelson A, Fain O. et al. Safety and efficacy of rituximab in adult immune thrombocytopenia: results from a prospective registry including 248 patients. Blood 2014; 124 (22) 3228-3236
- 78 Arnold DM, Heddle NM, Carruthers J. et al. A pilot randomized trial of adjuvant rituximab or placebo for nonsplenectomized patients with immune thrombocytopenia. Blood 2012; 119 (06) 1356-1362
- 79 Pasa S, Altintas A, Cil T, Danis R, Ayyildiz O. The efficacy of rituximab in patients with splenectomized refractory chronic idiopathic thrombocythopenic purpura. J Thromb Thrombolysis 2009; 27 (03) 329-333
- 80 Lucchini E, Zaja F, Bussel J. Rituximab in the treatment of immune thrombocytopenia: what is the role of this agent in 2019?. Haematologica 2019; 104 (06) 1124-1135
- 81 Deshayes S, Khellaf M, Zarour A. et al. Long-term safety and efficacy of rituximab in 248 adults with immune thrombocytopenia: results at 5 years from the French prospective registry ITP-ritux. Am J Hematol 2019; 94 (12) 1314-1324
- 82 Zaja F, Volpetti S, Chiozzotto M. et al. Long-term follow-up analysis after rituximab salvage therapy in adult patients with immune thrombocytopenia. Am J Hematol 2012; 87 (09) 886-889
- 83 Page EE, Kremer Hovinga JA, Terrell DR, Vesely SK, George JN. Rituximab reduces risk for relapse in patients with thrombotic thrombocytopenic purpura. Blood 2016; 127 (24) 3092-3094
- 84 Froissart A, Buffet M, Veyradier A. et al; French Thrombotic Microangiopathies Reference Center, Experience of the French Thrombotic Microangiopathies Reference Center. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Crit Care Med 2012; 40 (01) 104-111
- 85 Rubia J, Moscardó F, Gómez MJ. et al; Grupo Español de Aféresis (GEA). Efficacy and safety of rituximab in adult patients with idiopathic relapsing or refractory thrombotic thrombocytopenic purpura: results of a Spanish multicenter study. Transfus Apher Sci 2010; 43 (03) 299-303
- 86 Bussel J, Arnold DM, Grossbard E. et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: results of two phase 3, randomized, placebo-controlled trials. Am J Hematol 2018; 93 (07) 921-930
- 87 Bussel JB, Arnold DM, Boxer MA. et al. Long-term fostamatinib treatment of adults with immune thrombocytopenia during the phase 3 clinical trial program. Am J Hematol 2019; 94 (05) 546-553
- 88 Soucemarianadin M, Benhamou Y, Delmas Y. et al. Twice-daily therapeutical plasma exchange-based salvage therapy in severe autoimmune thrombotic thrombocytopenic purpura: the French TMA Reference Center experience. Eur J Haematol 2016; 97 (02) 183-191
- 89 Coppo P, Bussel A, Charrier S. et al. High-dose plasma infusion versus plasma exchange as early treatment of thrombotic thrombocytopenic purpura/hemolytic-uremic syndrome. Medicine (Baltimore) 2003; 82 (01) 27-38
- 90 Scully M, Cataland SR, Peyvandi F. et al; HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380 (04) 335-346
- 91 Peyvandi F, Scully M, Kremer Hovinga JA. et al; TITAN Investigators. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374 (06) 511-522
- 92 Kühne L, Kaufeld J, Völker LA. et al. Alternate-day dosing of caplacizumab for immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2022; 20 (04) 951-960
- 93 Vianelli N, Palandri F, Polverelli N. et al. Splenectomy as a curative treatment for immune thrombocytopenia: a retrospective analysis of 233 patients with a minimum follow up of 10 years. Haematologica 2013; 98 (06) 875-880
- 94 Zaja F, Barcellini W, Cantoni S. et al. Thrombopoietin receptor agonists for preparing adult patients with immune thrombocytopenia to splenectomy: results of a retrospective, observational GIMEMA study. Am J Hematol 2016; 91 (05) E293-E295
- 95 Park YH, Yi HG, Kim CS. et al; Gyeonggi/Incheon Branch, The Korean Society of Hematology. Clinical outcome and predictive factors in the response to splenectomy in elderly patients with primary immune thrombocytopenia: a multicenter retrospective study. Acta Haematol 2016; 135 (03) 162-171
- 96 Thai LH, Mahévas M, Roudot-Thoraval F. et al. Long-term complications of splenectomy in adult immune thrombocytopenia. Medicine (Baltimore) 2016; 95 (48) e5098
- 97 Godeau B. Is splenectomy a good strategy for refractory immune thrombocytopenia in adults?. Br J Haematol 2023; 203 (01) 86-95
- 98 Khan PN, Nair RJ, Olivares J, Tingle LE, Li Z. Postsplenectomy reactive thrombocytosis. Proc Bayl Univ Med Cent 2009; 22 (01) 9-12
- 99 Schattner A, Kadi J, Dubin I. Reactive thrombocytosis in acute infectious diseases: prevalence, characteristics and timing. Eur J Intern Med 2019; 63: 42-45
- 100 Harrison CN, Bareford D, Butt N. et al; British Committee for Standards in Haematology. Guideline for investigation and management of adults and children presenting with a thrombocytosis. Br J Haematol 2010; 149 (03) 352-375
- 101 Tefferi A, Ho TC, Ahmann GJ, Katzmann JA, Greipp PR. Plasma interleukin-6 and C-reactive protein levels in reactive versus clonal thrombocytosis. Am J Med 1994; 97 (04) 374-378
- 102 Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99 (04) 697-718
- 103 Tefferi A, Guglielmelli P, Larson DR. et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124 (16) 2507-2513 , quiz 2615
- 104 Tefferi A. Myeloproliferative neoplasms: a decade of discoveries and treatment advances. Am J Hematol 2016; 91 (01) 50-58
- 105 Alimam S, Villiers W, Dillon R. et al. Patients with triple-negative, JAK2V617F- and CALR-mutated essential thrombocythemia share a unique gene expression signature. Blood Adv 2021; 5 (04) 1059-1068
- 106 Pikman Y, Lee BH, Mercher T. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3 (07) e270
- 107 Pecquet C, Papadopoulos N, Balligand T. et al. Secreted mutant calreticulins as rogue cytokines in myeloproliferative neoplasms. Blood 2023; 141 (08) 917-929
- 108 Szuber N, Hanson CA, Lasho TL. et al. MPL-mutated essential thrombocythemia: a morphologic reappraisal. Blood Cancer J 2018; 8 (12) 121
- 109 How J, Hobbs G. Interferons as the first choice of cytoreduction in essential thrombocythemia and polycythemia vera. J Natl Compr Canc Netw 2022; 20 (09) 1063-1068
- 110 Mullally A, Bruedigam C, Poveromo L. et al. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood 2013; 121 (18) 3692-3702
- 111 Quintás-Cardama A, Kantarjian H, Manshouri T. et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 2009; 27 (32) 5418-5424
- 112 Kiladjian JJ, Cassinat B, Chevret S. et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008; 112 (08) 3065-3072
- 113 Bewersdorf JP, Giri S, Wang R. et al. Interferon alpha therapy in essential thrombocythemia and polycythemia vera—a systematic review and meta-analysis. Leukemia 2021; 35 (06) 1643-1660
- 114 Gu W, Yang R, Xiao Z, Zhang L. Clinical outcomes of interferon therapy for polycythemia vera and essential thrombocythemia: a systematic review and meta-analysis. Int J Hematol 2021; 114 (03) 342-354
- 115 Knudsen TA, Skov V, Stevenson K. et al. Genomic profiling of a randomized trial of interferon-α vs hydroxyurea in MPN reveals mutation-specific responses. Blood Adv 2022; 6 (07) 2107-2119
- 116 Rocca B, Secchiero P, Ciabattoni G. et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci U S A 2002; 99 (11) 7634-7639
- 117 Cattaneo M. Aspirin in essential thrombocythemia. For whom? What formulation? What regimen?. Haematologica 2023; 108 (06) 1487-1499
- 118 Alvarez-Larrán A, Cervantes F, Pereira A. et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood 2010; 116 (08) 1205-1210 , quiz 1387
- 119 Alvarez-Larrán A, Pereira A, Guglielmelli P. et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica 2016; 101 (08) 926-931
- 120 Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14: 1120911
- 121 Sprüssel A, Schulte JH, Weber S. et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 2012; 26 (09) 2039-2051
- 122 Gill H, Palandri F, Ross DM. et al. A phase 2 study of the LSD1 inhibitor bomedemstat (IMG-7289) for the treatment of essential thrombocythemia (ET). Blood 2022; 140: 1784-1787
- 123 Nguyen TH, Bach KQ, Vu HQ, Nguyen NQ, Duong TD, Wheeler J. Therapeutic thrombocytapheresis in myeloproliferative neoplasms: a single-institution experience. J Clin Apher 2021; 36 (01) 101-108
- 124 Baumann Kreuziger L, Massicotte MP. Mechanical circulatory support: balancing bleeding and clotting in high-risk patients. Hematology (Am Soc Hematol Educ Program) 2015; 2015: 61-68
- 125 Roka-Moiia Y, Walk R, Palomares DE. et al. Platelet activation via shear stress exposure induces a differing pattern of biomarkers of activation versus biochemical agonists. Thromb Haemost 2020; 120 (05) 776-792
- 126 Slepian MJ, Sheriff J, Hutchinson M. et al. Shear-mediated platelet activation in the free flow: perspectives on the emerging spectrum of cell mechanobiological mechanisms mediating cardiovascular implant thrombosis. J Biomech 2017; 50: 20-25
- 127 Roka-Moiia Y, Miller-Gutierrez S, Palomares DE. et al. Platelet dysfunction during mechanical circulatory support: elevated shear stress promotes downregulation of αIIbβ3 and GPIb via microparticle shedding decreasing platelet aggregability. Arterioscler Thromb Vasc Biol 2021; 41 (04) 1319-1336
- 128 Al-Tamimi M, Tan CW, Qiao J. et al. Pathologic shear triggers shedding of vascular receptors: a novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood 2012; 119 (18) 4311-4320
- 129 Cheng H, Yan R, Li S. et al. Shear-induced interaction of platelets with von Willebrand factor results in glycoprotein Ibalpha shedding. Am J Physiol Heart Circ Physiol 2009; 297 (06) H2128-H2135
- 130 Chen Z, Koenig SC, Slaughter MS, Griffith BP, Wu ZJ. Quantitative characterization of shear-induced platelet receptor shedding: glycoprotein Ibα, glycoprotein VI, and glycoprotein IIb/IIIa. ASAIO J 2018; 64 (06) 773-778
- 131 Petricevic M, Milicic D, Boban M. et al. Bleeding and thrombotic events in patients undergoing mechanical circulatory support: a review of literature. Thorac Cardiovasc Surg 2015; 63 (08) 636-646