Semin Liver Dis
DOI: 10.1055/a-2563-9791
Review Article

Primary Cilia in Hepatic Biliary Hyperplasia: Implications for Liver Diseases

Kishor Pant*
1   The Hormel Institute, University of Minnesota, Austin, Minnesota
,
Estanislao Peixoto*
1   The Hormel Institute, University of Minnesota, Austin, Minnesota
,
Sergio A. Gradilone
1   The Hormel Institute, University of Minnesota, Austin, Minnesota
2   Masonic Cancer Centre, University of Minnesota, Minneapolis, Minnesota
› Institutsangaben

Funding This work was supported by National Institutes of Health Grant R01DK132781 (to S.A.G.), Cholangiocarcinoma Foundation (to K.P.), and The Hormel Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Abstract

Primary cilia, hair-like projections on the surface of various cell types, play crucial roles in sensing and regulating environmental cues within the liver, particularly among cholangiocytes. These structures detect changes in bile composition, flow, and other biochemical signals, integrating this information to modulate cellular processes. Dysfunction in cholangiocyte cilia—whether due to structural abnormalities or genetic mutations—has been linked to an array of cholangiopathies and ciliopathies. These include conditions such as biliary atresia, cholangiocarcinoma, primary sclerosing cholangitis, and polycystic liver diseases, each with distinct clinical phenotypes influenced by impaired ciliary function. Given the complexity of the ciliary proteome and its role in cellular signaling, including the Hedgehog, Wnt, and TGR5 pathways, ciliary dysfunction disrupts essential signaling cascades, thus driving disease progression. While over 40 gene mutations are associated with ciliopathic features, there may be additional contributors within the expansive ciliary proteome. This study synthesizes current knowledge on cholangiocyte cilia, emphasizing their mechanistic role in liver disease, and highlights emerging therapeutic strategies aimed at restoring ciliary function. In conclusion, ciliotherapies are proposed as a promising approach for addressing cholangiopathies, with the potential to shift the current therapeutic landscape.

* Equal contribution.




Publikationsverlauf

Accepted Manuscript online:
21. März 2025

Artikel online veröffentlicht:
25. April 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Luo N, Conwell MD, Chen X. et al. Primary cilia signaling mediates intraocular pressure sensation. Proc Natl Acad Sci U S A 2014; 111 (35) 12871-12876
  • 2 Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 2019; 15 (04) 199-219
  • 3 Carotenuto P, Gradilone SA, Franco B. Cilia and cancer: from molecular genetics to therapeutic strategies. Genes (Basel) 2023; 14 (07) 14
  • 4 Peixoto E, Richard S, Pant K, Biswas A, Gradilone SA. The primary cilium: Its role as a tumor suppressor organelle. Biochem Pharmacol 2020; 175: 113906
  • 5 Mansini AP, Lorenzo Pisarello MJ, Thelen KM. et al. MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology 2018; 68 (02) 561-573
  • 6 Larusso NF, Masyuk TV. The role of cilia in the regulation of bile flow. Dig Dis 2011; 29 (01) 6-12
  • 7 Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium. Front Cell Dev Biol 2018; 6: 8
  • 8 Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25 (07) 555-573
  • 9 Jiang M, Palicharla VR, Miller D. et al. Human IFT-A complex structures provide molecular insights into ciliary transport. Cell Res 2023; 33 (04) 288-298
  • 10 Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 2006; 131 (03) 911-920
  • 11 Xiao ZS, Quarles LD. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci 2010; 1192 (01) 410-421
  • 12 Nauli SM, Alenghat FJ, Luo Y. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33 (02) 129-137
  • 13 Gradilone SA, Masyuk AI, Splinter PL. et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 2007; 104 (48) 19138-19143
  • 14 Mansini AP, Peixoto E, Jin S, Richard S, Gradilone SA. The chemosensory function of primary cilia regulates cholangiocyte migration, invasion and tumor growth. Hepatology 2019; 69 (04) 1582-1598
  • 15 Masyuk AI, Gradilone SA, Banales JM. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008; 295 (04) G725-G734
  • 16 Schou KB, Pedersen LB, Christensen ST. Ins and outs of GPCR signaling in primary cilia. EMBO Rep 2015; 16 (09) 1099-1113
  • 17 Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem 2010; 391 (07) 785-789
  • 18 Reich M, Deutschmann K, Sommerfeld A. et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 2016; 65 (03) 487-501
  • 19 Masyuk AI, Huang BQ, Radtke BN. et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 2013; 304 (11) G1013-G1024
  • 20 Hogan MC, Manganelli L, Woollard JR. et al. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 2009; 20 (02) 278-288
  • 21 Wood CR, Rosenbaum JL. Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 2015; 25 (05) 276-285
  • 22 Masyuk AI, Huang BQ, Ward CJ. et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 2010; 299 (04) G990-G999
  • 23 Omenetti A, Diehl AM. Hedgehog signaling in cholangiocytes. Curr Opin Gastroenterol 2011; 27 (03) 268-275
  • 24 Bangs F, Anderson KV. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb Perspect Biol 2017; 9 (05) 9
  • 25 Razumilava N, Gradilone SA, Smoot RL. et al. Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma. J Hepatol 2014; 60 (03) 599-605
  • 26 Sato Y, Yamamura M, Sasaki M, Harada K. Blockade of Hedgehog signaling attenuates biliary cystogenesis in the polycystic kidney (PCK) rat. Am J Pathol 2018; 188 (10) 2251-2263
  • 27 Anichini G, Carrassa L, Stecca B, Marra F, Raggi C. The role of the Hedgehog pathway in cholangiocarcinoma. Cancers (Basel) 2021; 13 (19) 4774
  • 28 Hor CHH, Lo JCW, Cham ALS, Leong WY, Goh ELK. Multifaceted functions of Rab23 on primary cilium-mediated and Hedgehog signaling-mediated cerebellar granule cell proliferation. J Neurosci 2021; 41 (32) 6850-6863
  • 29 Liu J, Xiao Q, Xiao J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7 (01) 3
  • 30 Vicent S, Lieshout R, Saborowski A. et al. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 (Suppl. 01) 79-97
  • 31 Youn YH, Hou S, Wu CC. et al. Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev 2022; 36 (11-12): 737-751
  • 32 Zhou B, Lin W, Long Y. et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7 (01) 95
  • 33 Takahashi K, Sato Y, Yamamura M. et al. Notch-Hes1 signaling activation in Caroli disease and polycystic liver disease. Pathol Int 2021; 71 (08) 521-529
  • 34 Zhang X, Du G, Xu Y. et al. Inhibition of notch signaling pathway prevents cholestatic liver fibrosis by decreasing the differentiation of hepatic progenitor cells into cholangiocytes. Lab Invest 2016; 96 (03) 350-360
  • 35 Rauff B, Malik A, Bhatti YA, Chudhary SA, Qadri I, Rafiq S. Notch signalling pathway in development of cholangiocarcinoma. World J Gastrointest Oncol 2020; 12 (09) 957-974
  • 36 Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25 (09) 499-513
  • 37 Habbig S, Bartram MP, Sägmüller JG. et al. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ. Hum Mol Genet 2012; 21 (26) 5528-5538
  • 38 Kim M, Kim M, Lee MS, Kim CH, Lim DS. The MST1/2–SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun 2014; 5: 5370
  • 39 Lee EJ, Seo E, Kim JW. et al. TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 2020; 117 (46) 29001-29012
  • 40 Cigliano A, Zhang S, Ribback S. et al. The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. J Exp Clin Cancer Res 2022; 41 (01) 192
  • 41 Boehlke C, Kotsis F, Patel V. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 2010; 12 (11) 1115-1122
  • 42 Lai Y, Jiang Y. Reciprocal regulation between primary cilia and mTORC1. Genes (Basel) 2020; 11 (06) 11
  • 43 Malhi H, Camilleri M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases. Curr Opin Pharmacol 2017; 37: 80-86
  • 44 Deutschmann K, Reich M, Klindt C. et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4 Pt B): 1319-1325
  • 45 Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54 (06) 1263-1272
  • 46 Pant K, Richard S, Peixoto E. et al. Cholangiocyte ciliary defects induce sustained epidermal growth factor receptor signaling. Hepatology 2025; 81 (04) 1132-1145
  • 47 Reich M, Spomer L, Klindt C. et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J Hepatol 2021; 75 (03) 634-646
  • 48 Deutschmann K, Reich M, Klindt C. et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4 Pt B): 1319-1325
  • 49 Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 2009; 50 (03) 861-870
  • 50 Masyuk TV, Masyuk AI, Lorenzo Pisarello M. et al. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling. Hepatology 2017; 66 (04) 1197-1218
  • 51 Schneider L, Clement CA, Teilmann SC. et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 2005; 15 (20) 1861-1866
  • 52 Tsai YC, Kuo TN, Chao YY. et al. PDGF-AA activates AKT and ERK signaling for testicular interstitial Leydig cell growth via primary cilia. J Cell Biochem 2023; 124 (01) 89-102
  • 53 Clement CA, Ajbro KD, Koefoed K. et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 2013; 3 (06) 1806-1814
  • 54 Waddell SH, Yao Y, Olaizola P. et al. A TGFβ-ECM-integrin signaling axis drives structural reconfiguration of the bile duct to promote polycystic liver disease. Sci Transl Med 2023; 15 (713) eabq5930
  • 55 Masyuk TV, Masyuk AI, LaRusso NF. Polycystic liver disease: the interplay of genes causative for hepatic and renal cystogenesis. Hepatology 2018; 67 (06) 2462-2464
  • 56 Goggolidou P, Richards T.. The genetic of autosomal recessive polycystic kidney disease (ARRPKD). BBA - Molecular Basis of Disease 2022; 1868: 166348
  • 57 Cornec-Le Gall E, Torres VE, Harris PC. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J Am Soc Nephrol 2018; 29 (01) 13-23
  • 58 Masyuk TV, Masyuk AI, LaRusso NF. Polycystic liver disease: advances in understanding and treatment. Annu Rev Pathol 2022; 17: 251-269
  • 59 Fabris L, Fiorotto R, Spirli C. et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019; 16 (08) 497-511
  • 60 Gradilone SA, Masyuk TV, Huang BQ. et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 2010; 139 (01) 304-14.e2
  • 61 Masyuk TV, Masyuk AI, LaRusso NF. Therapeutic targets in polycystic liver disease. Curr Drug Targets 2017; 18 (08) 950-957
  • 62 Lee SH, Somlo S. Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res Clin Pract 2014; 33 (02) 73-78
  • 63 Douguet D, Patel A, Honoré E. Structure and function of polycystins: insights into polycystic kidney disease. Nat Rev Nephrol 2019; 15 (07) 412-422
  • 64 Ma M, Gallagher AR, Somlo S. Ciliary mechanisms of cyst formation in polycystic kidney disease. Csh Perspect Biol 2017; 9: a028209
  • 65 Hellen DJ, Bennett A, Malla S. et al. Liver-restricted deletion of the biliary atresia candidate gene Pkd1l1 causes bile duct dysmorphogenesis and ciliopathy. Hepatology 2023; 77 (04) 1274-1286
  • 66 Karjoo S, Hand NJ, Loarca L, Russo PA, Friedman JR, Wells RG. Extrahepatic cholangiocyte cilia are abnormal in biliary atresia. J Pediatr Gastroenterol Nutr 2013; 57 (01) 96-101
  • 67 Hartley JL, O'Callaghan C, Rossetti S. et al. Investigation of primary cilia in the pathogenesis of biliary atresia. J Pediatr Gastroenterol Nutr 2011; 52 (04) 485-488
  • 68 Lam WY, Tang CSM, So MT. et al. Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism. EBioMedicine 2021; 71: 103530
  • 69 Glessner JT, Ningappa MB, Ngo KA. et al. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J Hepatol 2023; 79 (06) 1385-1395
  • 70 Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 2013; 73 (07) 2259-2270
  • 71 Chen J, Cheng NC, Boland JA. et al. Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell proliferation and cystic liver lesions in TAA-treated mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868 (04) 166335
  • 72 Pant K, Peixoto E, Richard S. et al. Histone deacetylase sirtuin 1 promotes loss of primary cilia in cholangiocarcinoma. Hepatology 2021; 74 (06) 3235-3248
  • 73 Mansini AP, Lorenzo Pisarello MJ, Thelen KM. et al. MiR-433 and miR-22 dysregulations induce HDAC6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology 2018; 68: 561-573
  • 74 Pant K, Richard S, Gradilone SA. Short-chain fatty acid butyrate induces cilia formation and potentiates the effects of HDAC6 inhibitors in cholangiocarcinoma cells. Front Cell Dev Biol 2022; 9: 809382
  • 75 Pant K, Peixoto E, Richard S, Gradilone SA. Role of histone deacetylases in carcinogenesis: potential role in cholangiocarcinoma. Cells 2020; 9 (03) 9
  • 76 Pant K, Richard S, Peixoto E. et al. The NAMPT inhibitor FK866 in combination with cisplatin reduces cholangiocarcinoma cells growth. Cells 2023; 12 (05) 12
  • 77 Pant K, Gradilone SA. NAMPT overexpression drives cell growth in polycystic liver disease through mitochondrial metabolism regulation. Am J Pathol 2024; 194 (08) 1528-1537
  • 78 Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol 2017; 12: 340-349
  • 79 Peixoto E, Jin S, Thelen K. et al. HDAC6-dependent ciliophagy is involved in ciliary loss and cholangiocarcinoma growth in human cells and murine models. Am J Physiol Gastrointest Liver Physiol 2020; 318 (06) G1022-G1033
  • 80 Morleo M, Brillante S, Formisano U. et al. Regulation of autophagosome biogenesis by OFD1-mediated selective autophagy. EMBO J 2021; 40 (04) e105120
  • 81 Yamamoto Y, Mizushima N. Autophagy and ciliogenesis. JMA J 2021; 4 (03) 207-215
  • 82 Shi P, Hoang-Minh LB, Tian J. et al. HDAC6 signaling at primary cilia promotes proliferation and restricts differentiation of glioma cells. Cancers (Basel) 2021; 13 (07) 13
  • 83 European Association for the Study of the Liver. Electronic address eee, European Association for the study of the L: EASL clinical practice guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017; 67: 145-172
  • 84 Jiang X, Karlsen TH. Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat Rev Gastroenterol Hepatol 2017; 14 (05) 279-295
  • 85 Song J, Li Y, Bowlus CL, Yang G, Leung PSC, Gershwin ME. Cholangiocarcinoma in patients with primary sclerosing cholangitis (PSC): a comprehensive review. Clin Rev Allergy Immunol 2020; 58 (01) 134-149
  • 86 Assis DN, Bowlus CL. Recent advances in the management of primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2023; 21 (08) 2065-2075
  • 87 Masyuk TV, Masyuk AI, LaRusso NF. TGR5 in the cholangiociliopathies. Dig Dis 2015; 33 (03) 420-425
  • 88 Carpino G, Cardinale V, Folseraas T. et al. Neoplastic transformation of the peribiliary stem cell niche in cholangiocarcinoma arisen in primary sclerosing cholangitis. Hepatology 2019; 69 (02) 622-638
  • 89 Grammatikopoulos T, Strautnieks S, Sambrotta M. et al. Mutations in Dcdc2, encoding doublecortin domain-containing protein 2, cause neonatal sclerosing cholangitis. J Hepatol 2015; 62: 271
  • 90 Grimsrud MM, Folseraas T. Pathogenesis, diagnosis and treatment of premalignant and malignant stages of cholangiocarcinoma in primary sclerosing cholangitis. Liver Int 2019; 39 (12) 2230-2237
  • 91 Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol 2013; 3 (01) 541-565
  • 92 Pant K, Gradilone SA. Hepatobiliary cancers: progress in diagnosis, pathogenesis, and treatment. Technol Cancer Res Treat 2022; 21: 15 330338221097203
  • 93 Masyuk AI, Masyuk TV, Trussoni CE, Pirius NE, LaRusso NF. Autophagy promotes hepatic cystogenesis in polycystic liver disease by depletion of cholangiocyte ciliogenic proteins. Hepatology 2022; 75 (05) 1110-1122
  • 94 Esser H, Kilpatrick AM, Man TY. et al. Primary cilia as a targetable node between biliary injury, senescence and regeneration in liver transplantation. J Hepatol 2024; 81 (06) 1005-1022
  • 95 Boulter L, Guest RV, Kendall TJ. et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest 2015; 125 (03) 1269-1285
  • 96 Fried S, Har-Zahav A, Hamudi Y. et al. Biliary atresia: insights into mechanisms using a toxic model of the disease including Wnt and Hippo signaling pathways and microtubules. . Pediatr Res 2024
  • 97 Dropmann A, Dooley S, Dewidar B. et al. TGF-β2 silencing to target biliary-derived liver diseases. Gut 2020; 69 (09) 1677-1690
  • 98 Lee D, Do IG, Choi K. et al. The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol 2012; 25 (01) 131-139
  • 99 Spirli C, Mariotti V, Villani A, Fabris L, Fiorotto R, Strazzabosco M. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J Hepatol 2017; 66 (03) 571-580