RSS-Feed abonnieren

DOI: 10.1055/a-2599-4925
HSP47 at the Crossroads of Thrombosis and Collagen Dynamics: Unlocking Therapeutic Horizons and Debates
Authors

Abstract
Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone encoded by the SERPINH1 gene, has emerged as a groundbreaking focus in thrombosis research. Recent findings published in “Science” have revolutionized our understanding of thrombosis, identifying HSP47 as a critical mediator in a new thrombosis target for treatment. This discovery not only unveils a novel pathway in thrombosis but also opens new avenues for therapeutic intervention. HSP47's significance extends beyond thrombosis, influencing pathological processes such as fibrosis and cancer. In fibrosis, its upregulation promotes collagen deposition, while its dysregulation in osteogenesis imperfecta (OI) Type X underscores the protein's indispensable role in collagen biosynthesis. The therapeutic challenge lies in balancing HSP47 inhibition to reduce fibrotic burden without impairing its essential physiological functions. In cancer, HSP47 plays dual roles. It supports tumor progression through collagen stabilization and metastasis facilitation while contributing to tissue repair under hyperthermia treatment combined with radiotherapy or chemotherapy. However, its overexpression can exacerbate tumor aggressiveness via mechanisms such as angiogenesis and epithelial–mesenchymal transition.
This review emphasizes the pivotal discovery of HSP47's thrombogenic role and its broader implications in disease biology. These findings mark a paradigm shift in thrombosis research and underscore the potential of HSP47 as a target in diverse pathological contexts, from platelet-driven diseases to fibrotic and oncological disorders.
Keywords
heat shock protein 47 - collagen - thrombosis - angiogenesis - cancer therapy - hyperthermiaAuthors' Contributions
D.M.S. and M.M.A. supervised the work and wrote the paper. A.F.C. participated in writing and editing of the paper.
Publikationsverlauf
Eingereicht: 05. Februar 2025
Angenommen: 22. April 2025
Artikel online veröffentlicht:
05. Juni 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
David M. Smadja, Alberto F. Chocron, M. Marc Abreu. HSP47 at the Crossroads of Thrombosis and Collagen Dynamics: Unlocking Therapeutic Horizons and Debates. TH Open 2025; 09: a25994925.
DOI: 10.1055/a-2599-4925
-
References
- 1
Ricard-Blum S.
The collagen family. Cold Spring Harb Perspect Biol 2011; 3 (01) a004978
Reference Ris Wihthout Link
- 2
Shoulders MD,
Raines RT.
Collagen structure and stability. Annu Rev Biochem 2009; 78: 929-958
Reference Ris Wihthout Link
- 3
Fujii KK,
Taga Y,
Sakai T.
et al.
Lowering the culture temperature corrects collagen abnormalities caused by HSP47 gene
knockout. Sci Rep 2019; 9 (01) 17433
Reference Ris Wihthout Link
- 4
Nagai N,
Hosokawa M,
Itohara S.
et al.
Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with
defects in collagen biosynthesis. J Cell Biol 2000; 150 (06) 1499-1506
Reference Ris Wihthout Link
- 5
Ito S,
Nagata K.
Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone
Hsp47 in vertebrate cells and human disease. J Biol Chem 2019; 294 (06) 2133-2141
Reference Ris Wihthout Link
- 6
Ito S,
Nagata K.
Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin Cell
Dev Biol 2017; 62: 142-151
Reference Ris Wihthout Link
- 7
Singh MK,
Shin Y,
Ju S.
et al.
Heat shock response and heat shock proteins: Current understanding and future opportunities
in human diseases. Int J Mol Sci 2024; 25 (08) 4209
Reference Ris Wihthout Link
- 8
Niwa T,
Kanamori T,
Ueda T,
Taguchi H.
Global analysis of chaperone effects using a reconstituted cell-free translation system.
Proc Natl Acad Sci U S A 2012; 109 (23) 8937-8942
Reference Ris Wihthout Link
- 9
Oecal S,
Socher E,
Uthoff M.
et al.
The pH-dependent client release from the collagen-specific chaperone HSP47 is triggered
by a tandem histidine pair. J Biol Chem 2016; 291 (24) 12612-12626
Reference Ris Wihthout Link
- 10
Taguchi T,
Razzaque MS.
The collagen-specific molecular chaperone HSP47: is there a role in fibrosis?. Trends
Mol Med 2007; 13 (02) 45-53
Reference Ris Wihthout Link
- 11
Bellaye P-S,
Burgy O,
Bonniaud P,
Kolb M.
HSP47: a potential target for fibrotic diseases and implications for therapy. Expert
Opin Ther Targets 2021; 25 (01) 49-62
Reference Ris Wihthout Link
- 12
Kaiser WJ,
Holbrook L-M,
Tucker KL,
Stanley RG,
Gibbins JM.
A functional proteomic method for the enrichment of peripheral membrane proteins reveals
the collagen binding protein Hsp47 is exposed on the surface of activated human platelets.
J Proteome Res 2009; 8 (06) 2903-2914
Reference Ris Wihthout Link
- 13
Sasikumar P,
AlOuda KS,
Kaiser WJ.
et al.
The chaperone protein HSP47: a platelet collagen binding protein that contributes
to thrombosis and hemostasis. J Thromb Haemost 2018; 16 (05) 946-959
Reference Ris Wihthout Link
- 14
Thienel M,
Müller-Reif JB,
Zhang Z.
et al.
Immobility-associated thromboprotection is conserved across mammalian species from
bear to human. Science 2023; 380 (6641): 178-187
Reference Ris Wihthout Link
- 15
Herbert A.
Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological
diseases. Genes Immun 2024; 25 (04) 265-276
Reference Ris Wihthout Link
- 16
Myllyharju J,
Kivirikko KI.
Collagens and collagen-related diseases. Ann Med 2001; 33 (01) 7-21
Reference Ris Wihthout Link
- 17
Kisseleva T,
Brenner D.
Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol
Hepatol 2021; 18 (03) 151-166
Reference Ris Wihthout Link
- 18
Karsdal MA,
Daniels SJ,
Holm Nielsen S.
et al.
Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int 2020; 40
(04) 736-750
Reference Ris Wihthout Link
- 19
Staab-Weijnitz CA.
Fighting the fiber: Targeting collagen in lung fibrosis. Am J Respir Cell Mol Biol
2022; 66 (04) 363-381
Reference Ris Wihthout Link
- 20
Bülow RD,
Boor P.
Extracellular matrix in kidney fibrosis: More than just a scaffold. J Histochem Cytochem
2019; 67 (09) 643-661
Reference Ris Wihthout Link
- 21
Eddy AA.
Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl
(2011) 2014; 4 (01) 2-8
Reference Ris Wihthout Link
- 22
Zhang X,
Zhang X,
Huang W,
Ge X.
The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother
2021; 135: 111067
Reference Ris Wihthout Link
- 23
Miyamura T,
Sakamoto N,
Kakugawa T.
et al.
Small molecule inhibitor of HSP47 prevents pro-fibrotic mechanisms of fibroblasts
in vitro. Biochem Biophys Res Commun 2020; 530 (03) 561-565
Reference Ris Wihthout Link
- 24
Bellaye P-S,
Burgy O,
Causse S,
Garrido C,
Bonniaud P.
Heat shock proteins in fibrosis and wound healing: good or evil?. Pharmacol Ther 2014;
143 (02) 119-132
Reference Ris Wihthout Link
- 25
Ishii H,
Mukae H,
Kakugawa T.
et al.
Increased expression of collagen-binding heat shock protein 47 in murine bleomycin-induced
pneumopathy. Am J Physiol Lung Cell Mol Physiol 2003; 285 (04) L957-L963
Reference Ris Wihthout Link
- 26
Kakugawa T,
Mukae H,
Hishikawa Y.
et al.
Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows
Arch 2010; 456 (03) 309-315
Reference Ris Wihthout Link
- 27
Ham SY,
Pyo MJ,
Kang M.
et al.
HSP47 increases the expression of type I collagen in fibroblasts through IRE1α activation,
XBP1 splicing, and nuclear translocation of β-catenin. Cells 2024; 13 (06) 527
Reference Ris Wihthout Link
- 28
Nakayama S,
Mukae H,
Sakamoto N.
et al.
Pirfenidone inhibits the expression of HSP47 in TGF-beta1-stimulated human lung fibroblasts.
Life Sci 2008; 82 (3-4): 210-217
Reference Ris Wihthout Link
- 29
Hisatomi K,
Mukae H,
Sakamoto N.
et al.
Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock
protein 47 in A549 cells. BMC Pulm Med 2012; 12: 24
Reference Ris Wihthout Link
- 30
Kakugawa T,
Mukae H,
Hayashi T.
et al.
Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia.
Respir Res 2005; 6 (01) 57
Reference Ris Wihthout Link
- 31
Kim DJ,
Park SH,
Sheen MR.
et al.
Comparison of experimental lung injury from acute renal failure with injury due to
sepsis. Respiration 2006; 73 (06) 815-824
Reference Ris Wihthout Link
- 32
Razzaque MS,
Nazneen A,
Taguchi T.
Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic
lung diseases. Mod Pathol 1998; 11 (12) 1183-1188
Reference Ris Wihthout Link
- 33
Iwashita T,
Kadota J,
Naito S.
et al.
Involvement of collagen-binding heat shock protein 47 and procollagen type I synthesis
in idiopathic pulmonary fibrosis: contribution of type II pneumocytes to fibrosis.
Hum Pathol 2000; 31 (12) 1498-1505
Reference Ris Wihthout Link
- 34
Sakamoto N,
Okuno D,
Tokito T.
et al.
HSP47: A therapeutic target in pulmonary fibrosis. Biomedicines 2023; 11 (09) 2387
Reference Ris Wihthout Link
- 35
Yokota S,
Kubota H,
Matsuoka Y.
et al.
Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with
mixed connective tissue disease. Biochem Biophys Res Commun 2003; 303 (02) 413-418
Reference Ris Wihthout Link
- 36
Hilberg F,
Roth GJ,
Krssak M.
et al.
BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good
antitumor efficacy. Cancer Res 2008; 68 (12) 4774-4782
Reference Ris Wihthout Link
- 37
Hostettler KE,
Zhong J,
Papakonstantinou E.
et al.
Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with
idiopathic pulmonary fibrosis. Respir Res 2014; 15 (01) 157
Reference Ris Wihthout Link
- 38
Wollin L,
Wex E,
Pautsch A.
et al.
Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur
Respir J 2015; 45 (05) 1434-1445
Reference Ris Wihthout Link
- 39
Wollin L,
Distler JHW,
Redente EF.
et al.
Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases.
Eur Respir J 2019; 54 (03) 1900161
Reference Ris Wihthout Link
- 40
Wollin L,
Maillet I,
Quesniaux V,
Holweg A,
Ryffel B.
Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib
in experimental models of lung fibrosis. J Pharmacol Exp Ther 2014; 349 (02) 209-220
Reference Ris Wihthout Link
- 41
Knüppel L,
Ishikawa Y,
Aichler M.
et al.
A novel antifibrotic mechanism of nintedanib and pirfenidone. Inhibition of collagen
fibril assembly. Am J Respir Cell Mol Biol 2017; 57 (01) 77-90
Reference Ris Wihthout Link
- 42
Lehmann M,
Buhl L,
Alsafadi HN.
et al.
Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell
function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respir
Res 2018; 19 (01) 175
Reference Ris Wihthout Link
- 43
Wu W,
Qiu L,
Wu J,
Liu X,
Zhang G.
Efficacy and safety of pirfenidone in the treatment of idiopathic pulmonary fibrosis
patients: a systematic review and meta-analysis of randomised controlled trials. BMJ
Open 2021; 11 (12) e050004
Reference Ris Wihthout Link
- 44
Kalayarasan S,
Sriram N,
Sudhandiran G.
Diallyl sulfide attenuates bleomycin-induced pulmonary fibrosis: critical role of
iNOS, NF-kappaB, TNF-alpha and IL-1beta. Life Sci 2008; 82 (23-24): 1142-1153
Reference Ris Wihthout Link
- 45
Chen L,
Wang T,
Wang X.
et al.
Blockade of advanced glycation end product formation attenuates bleomycin-induced
pulmonary fibrosis in rats. Respir Res 2009; 10 (01) 55
Reference Ris Wihthout Link
- 46
Liu J,
Jin Z,
Wang X,
Jakoš T,
Zhu J,
Yuan Y.
RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023;
323: 121713
Reference Ris Wihthout Link
- 47
Goulet S,
Bihl MP,
Gambazzi F,
Tamm M,
Roth M.
Opposite effect of corticosteroids and long-acting beta(2)-agonists on serum- and
TGF-beta(1)-induced extracellular matrix deposition by primary human lung fibroblasts.
J Cell Physiol 2007; 210 (01) 167-176
Reference Ris Wihthout Link
- 48
Vergoten G,
Bailly C.
Insights into the mechanism of action of the degraded limonoid prieurianin. Int J
Mol Sci 2024; 25 (07) 3597
Reference Ris Wihthout Link
- 49
Satoh M,
Hirayoshi K,
Yokota S,
Hosokawa N,
Nagata K.
Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized
procollagen. J Cell Biol 1996; 133 (02) 469-483
Reference Ris Wihthout Link
- 50
Ko MK,
Kay EP.
Hsp47-dependent and -independent intracellular trafficking of type I collagen in corneal
endothelial cells. Mol Vis 1999; 5: 17
Reference Ris Wihthout Link
- 51
Liu Y,
Liu J,
Quimbo A.
et al.
Anti-HSP47 siRNA lipid nanoparticle ND-L02-s0201 reverses interstitial pulmonary fibrosis
in preclinical rat models. ERJ Open Res 2021; 7 (02) 00733-02020
Reference Ris Wihthout Link
- 52
Okuno D,
Sakamoto N,
Tagod MSO.
et al.
Screening of inhibitors targeting heat shock protein 47 involved in the development
of idiopathic pulmonary fibrosis. ChemMedChem 2021; 16 (16) 2515-2523
Reference Ris Wihthout Link
- 53
Wu S,
Liang C,
Xie X.
et al.
Hsp47 inhibitor Col003 attenuates collagen-induced platelet activation and cerebral
ischemic-reperfusion injury in rats. Front Pharmacol 2022; 12: 792263
Reference Ris Wihthout Link
- 54
Chen J-J,
Jin P-S,
Zhao S.
et al.
Effect of heat shock protein 47 on collagen synthesis of keloid in vivo. ANZ J Surg
2011; 81 (06) 425-430
Reference Ris Wihthout Link
- 55
Hagiwara S,
Iwasaka H,
Matsumoto S,
Noguchi T.
An antisense oligonucleotide to HSP47 inhibits paraquat-induced pulmonary fibrosis
in rats. Toxicology 2007; 236 (03) 199-207
Reference Ris Wihthout Link
- 56
Hagiwara S,
Iwasaka H,
Matsumoto S,
Noguchi T.
Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced
pulmonary fibrosis in rats. Respir Res 2007; 8 (01) 37
Reference Ris Wihthout Link
- 57
Huang J-Q,
Tao R,
Li L.
et al.
Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis
in mice. Int J Parasitol 2014; 44 (01) 23-35
Reference Ris Wihthout Link
- 58
Morry J,
Ngamcherdtrakul W,
Gu S.
et al.
Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles
for treating fibrosis. Biomaterials 2015; 66: 41-52
Reference Ris Wihthout Link
- 59
Xia Z,
Abe K,
Furusu A.
et al.
Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting
heat shock protein 47. Am J Nephrol 2008; 28 (01) 34-46
Reference Ris Wihthout Link
- 60
Obata Y,
Nishino T,
Kushibiki T.
et al.
HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal
fibrosis in mice. Acta Biomater 2012; 8 (07) 2688-2696
Reference Ris Wihthout Link
- 61
Sato Y,
Murase K,
Kato J.
et al.
Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against
a collagen-specific chaperone. Nat Biotechnol 2008; 26 (04) 431-442
Reference Ris Wihthout Link
- 62
Ishiwatari H,
Sato Y,
Murase K.
et al.
Treatment of pancreatic fibrosis with siRNA against a collagen-specific chaperone
in vitamin A-coupled liposomes. Gut 2013; 62 (09) 1328-1339
Reference Ris Wihthout Link
- 63
Otsuka M,
Shiratori M,
Chiba H.
et al.
Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47
in vitamin A-coupled liposomes. Exp Lung Res 2017; 43 (6-7): 271-282
Reference Ris Wihthout Link
- 64
Ohigashi H,
Hashimoto D,
Hayase E.
et al.
Ocular instillation of vitamin A-coupled liposomes containing HSP47 siRNA ameliorates
dry eye syndrome in chronic GVHD. Blood Adv 2019; 3 (07) 1003-1010
Reference Ris Wihthout Link
- 65
Yamakawa T,
Ohigashi H,
Hashimoto D.
et al.
Vitamin A-coupled liposomes containing siRNA against HSP47 ameliorate skin fibrosis
in chronic graft-versus-host disease. Blood 2018; 131 (13) 1476-1485
Reference Ris Wihthout Link
- 66
Zhu J,
Xiong G,
Fu H,
Evers BM,
Zhou BP,
Xu R.
Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network.
Cancer Res 2015; 75 (08) 1580-1591
Reference Ris Wihthout Link
- 67
Mori K,
Toiyama Y,
Okugawa Y.
et al.
Preoperative heat shock protein 47 levels identify colorectal cancer patients with
lymph node metastasis and poor prognosis. Oncol Lett 2020; 20 (06) 333
Reference Ris Wihthout Link
- 68
Mori K,
Toiyama Y,
Otake K.
et al.
Proteomics analysis of differential protein expression identifies heat shock protein
47 as a predictive marker for lymph node metastasis in patients with colorectal cancer.
Int J Cancer 2017; 140 (06) 1425-1435
Reference Ris Wihthout Link
- 69
Huang X,
Gollin SM,
Raja S,
Godfrey TE.
High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1,
that is amplified and overexpressed in oral cancer cells. Proc Natl Acad Sci U S A
2002; 99 (17) 11369-11374
Reference Ris Wihthout Link
- 70
Shi R,
Yu R,
Lian F.
et al.
Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35 (07) 623-637
Reference Ris Wihthout Link
- 71
Xiong G,
Chen J,
Zhang G.
et al.
Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet
interaction. Proc Natl Acad Sci U S A 2020; 117 (07) 3748-3758
Reference Ris Wihthout Link
- 72
Tian S,
Peng P,
Li J.
et al.
SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling
pathway. Aging (Albany NY) 2020; 12 (04) 3574-3593
Reference Ris Wihthout Link
- 73
Chen J,
Wang S,
Zhang Z,
Richards CI,
Xu R.
Heat shock protein 47 (HSP47) binds to discoidin domain-containing receptor 2 (DDR2)
and regulates its protein stability. J Biol Chem 2019; 294 (45) 16846-16854
Reference Ris Wihthout Link
- 74
Yoneda A,
Minomi K,
Tamura Y.
HSP47 promotes metastasis of breast cancer by interacting with myosin IIA via the
unfolded protein response transducer IRE1α. Oncogene 2020; 39 (23) 4519-4537
Reference Ris Wihthout Link
- 75
Wu ZB,
Cai L,
Lin SJ.
et al.
Heat shock protein 47 promotes glioma angiogenesis. Brain Pathol 2016; 26 (01) 31-42
Reference Ris Wihthout Link
- 76
Ma W,
Ou T,
Cui X.
et al.
HSP47 contributes to angiogenesis by induction of CCL2 in bladder cancer. Cell Signal
2021; 85: 110044
Reference Ris Wihthout Link
- 77
Recchia FM,
Xu L.
Differential expression of the collagen-binding protein Hsp47 in experimental retinal
neovascularization. Invest Ophthalmol Vis Sci 2005; 46: 3162
Reference Ris Wihthout Link
- 78
Wendelboe A,
Weitz JI.
Global health burden of venous thromboembolism. Arterioscler Thromb Vasc Biol 2024;
44 (05) 1007-1011
Reference Ris Wihthout Link
- 79
Khan F,
Tritschler T,
Kahn SR,
Rodger MA.
Venous thromboembolism. Lancet 2021; 398 (10294): 64-77
Reference Ris Wihthout Link
- 80
AlOuda SK,
Sasikumar P,
AlThunayan T.
et al.
Role of heat shock protein 47 in platelet glycoprotein VI dimerization and signaling.
Res Pract Thromb Haemost 2023; 7 (06) 102177
Reference Ris Wihthout Link
- 81
Crescente M,
Pluthero FG,
Li L.
et al.
Intracellular trafficking, localization, and mobilization of platelet-borne Thiol
isomerases. Arterioscler Thromb Vasc Biol 2016; 36 (06) 1164-1173
Reference Ris Wihthout Link
- 82
Liu D,
Razzaque MS,
Cheng M,
Taguchi T.
The renal expression of heat shock protein 47 and collagens in acute and chronic experimental
diabetes in rats. Histochem J 2001; 33 (11-12): 621-628
Reference Ris Wihthout Link
- 83
Manderstedt E,
Lind-Halldén C,
Halldén C.
et al.;
Regeneron Genetics Center.
SERPINH1 variants and thrombotic risk among middle-aged and older adults: a population-based
cohort study. J Thromb Haemost 2024; 22 (03) 869-873
Reference Ris Wihthout Link
- 84
Cai H,
Sasikumar P,
Little G.
et al.
Identification of HSP47 binding site on native collagen and its implications for the
development of HSP47 inhibitors. Biomolecules 2021; 11 (07) 983
Reference Ris Wihthout Link
- 85
Charles S,
Fatrara T,
Bouriche T.
et al.
Tissue factor-bearing extracellular vesicles, procoagulant phospholipids and D-dimer
as potential biomarkers for venous thromboembolism in patients with newly diagnosed
multiple myeloma: A comprehensive analysis. Thromb Res 2025; 247: 109256
Reference Ris Wihthout Link
- 86
Lucotti S,
Ogitani Y,
Kenific CM.
et al.
Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated
thrombosis and metastasis via integrin beta 2. Cell 2025; 188 (06) 1642-1661.e24
Reference Ris Wihthout Link
- 87
Shibata C,
Otsuka M,
Ishigaki K,
Seimiya T,
Kishikawa T,
Fujishiro M.
CA19-9-positive extracellular vesicle is a risk factor for cancer-associated thrombosis
in pancreatic cancer. Gastro Hep Adv 2024; 3 (04) 551-561
Reference Ris Wihthout Link
- 88
Osorio LA,
Lozano M,
Soto P.
et al.
Levels of small extracellular vesicles containing hERG-1 and Hsp47 as potential biomarkers
for cardiovascular diseases. Int J Mol Sci 2024; 25 (09) 4913
Reference Ris Wihthout Link
- 89
Kajikawa Y,
Morihara T,
Sakamoto H.
et al.
Platelet-rich plasma enhances the initial mobilization of circulation-derived cells
for tendon healing. J Cell Physiol 2008; 215 (03) 837-845
Reference Ris Wihthout Link
- 90
Wu C-L,
Lee S-S,
Tsai C-H,
Lu KH,
Zhao JH,
Chang YC.
Platelet-rich fibrin increases cell attachment, proliferation and collagen-related
protein expression of human osteoblasts. Aust Dent J 2012; 57 (02) 207-212
Reference Ris Wihthout Link
- 91
Junkiert-Czarnecka A,
Pilarska-Deltow M,
Bąk A,
Heise M,
Haus O.
The role of gene encoding collagen secretion protein (SERPINH1) in the pathogenesis
of a hypermobile type of Ehlers-Danlos syndrome. Postepy Dermatol Alergol 2023; 40
(01) 102-106
Reference Ris Wihthout Link
- 92
Smadja DM.
Hyperthermia for targeting cancer and cancer stem cells: Insights from novel cellular
and clinical approaches. Stem Cell Rev Rep 2024; 20 (06) 1532-1539
Reference Ris Wihthout Link
- 93
Mallory M,
Gogineni E,
Jones GC,
Greer L,
Simone II CB.
Therapeutic hyperthermia: The old, the new, and the upcoming. Crit Rev Oncol Hematol
2016; 97: 56-64
Reference Ris Wihthout Link
- 94
Smadja DM,
Abreu MM.
Hyperthermia and targeting heat shock proteins: innovative approaches for neurodegenerative
disorders and Long COVID. Front Neurosci 2025; 19: 1475376
Reference Ris Wihthout Link
- 95
Abreu MM,
Chocron AF,
Smadja DM.
From cold to hot: mechanisms of hyperthermia in modulating tumor immunology for enhanced
immunotherapy. Front Immunol 2025; 16: 1487296
Reference Ris Wihthout Link
- 96
Lukácsi S,
Munkácsy G,
Győrffy B.
Harnessing hyperthermia: Molecular, cellular, and immunological insights for enhanced
anticancer therapies. Integr Cancer Ther 2024; 23: 15 347354241242094
Reference Ris Wihthout Link
- 97
Sharma HS,
Hoopes PJ.
Hyperthermia induced pathophysiology of the central nervous system. Int J Hyperthermia
2003; 19 (03) 325-354
Reference Ris Wihthout Link
- 98
Beemelmanns A,
Zanuzzo FS,
Xue X,
Sandrelli RM,
Rise ML,
Gamperl AK.
The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC
Genomics 2021; 22 (01) 261
Reference Ris Wihthout Link
- 99
Akbarzadeh A,
Günther OP,
Houde AL.
et al.
Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics
2018; 19 (01) 749
Reference Ris Wihthout Link
- 100
Nagata K,
Saga S,
Yamada KM.
A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock
protein. J Cell Biol 1986; 103 (01) 223-229
Reference Ris Wihthout Link
- 101
Verrico AK,
Haylett AK,
Moore JV.
In vivo expression of the collagen-related heat shock protein HSP47, following hyperthermia
or photodynamic therapy. Lasers Med Sci 2001; 16 (03) 192-198
Reference Ris Wihthout Link
- 102
Abdelnasir A,
Sun JR,
Cheng YF.
et al.
Evaluation of Hsp47 expression in heat-stressed rat myocardial cells in vitro and
in vivo. Genet Mol Res 2014; 13 (04) 10787-10802
Reference Ris Wihthout Link
- 103
Dams SD,
De Liefde-van Beest M,
Nuijs AM.
et al.
Pulsed heat shocks enhance procollagen type I and procollagen type III expression
in human dermal fibroblasts. Skin Res Technol 2010; 16: 354-364 . Accessed October
1, 2024 at: https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2010.00441.x
Reference Ris Wihthout Link
- 104
Haylett AK,
Higley K,
Chiu M,
Shackley DC,
Moore JV.
Collagen secretion after photodynamic therapy versus scar-inducing anti-cancer modalities:
an in vitro study. Photochem Photobiol Sci 2002; 1 (09) 673-677
Reference Ris Wihthout Link
- 105
Shackley DC,
Haylett A,
Whitehurst C.
et al.
Comparison of the cellular molecular stress responses after treatments used in bladder
cancer. BJU Int 2002; 90 (09) 924-932
Reference Ris Wihthout Link
- 106
Verrico AK,
Moore JV.
Expression of the collagen-related heat shock protein HSP47 in fibroblasts treated
with hyperthermia or photodynamic therapy. Br J Cancer 1997; 76 (06) 719-724
Reference Ris Wihthout Link
- 107
Miyaishi O,
Ito Y,
Kozaki K.
et al.
Age-related attenuation of HSP47 heat response in fibroblasts. Mech Ageing Dev 1995;
77 (03) 213-226
Reference Ris Wihthout Link
- 108
Tong M,
Zhang S,
Ma P.
et al.
Efficacy analysis of intermittent pneumatic compression combined with hyperthermia
at different temperatures for prevention of deep vein thrombosis after simulated orthopaedic
surgery in male rabbits. Am J Transl Res 2024; 16 (10) 5337-5346
Reference Ris Wihthout Link
- 109
Khan ES,
Däinghaus T.
HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl
Med 2024; 14 (08) e1755
Reference Ris Wihthout Link
- 110
Morito D,
Nagata K.
ER stress proteins in autoimmune and inflammatory diseases. Front Immunol 2012; 3:
48
Reference Ris Wihthout Link
- 111
Fujimoto M,
Hamaguchi Y,
Yazawa N,
Komura K,
Takehara K,
Sato S.
Autoantibodies to a collagen-specific molecular chaperone, heat-shock protein 47,
in systemic sclerosis. Clin Exp Immunol 2004; 138 (03) 534-539
Reference Ris Wihthout Link
- 112
Kakugawa T,
Yokota S,
Mukae H.
et al.
High serum concentrations of autoantibodies to HSP47 in nonspecific interstitial pneumonia
compared with idiopathic pulmonary fibrosis. BMC Pulm Med 2008; 8: 23
Reference Ris Wihthout Link
- 113
Izquierdo E,
Cañete JD,
Celis R.
et al.
Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations
and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum 2011;
63 (09) 2575-2583
Reference Ris Wihthout Link
- 114
Kalayarasan S,
Sriram N,
Sudhandiran G.
Life Sci 2008; 82 (23-24): 1142-1153
Reference Ris Wihthout Link
- 115
Liu Y,
Liu J,
Quimbo A.
et al
Anti-HSP47 siRNA lipid nanoparticle ND-L02-s0201 reverses interstitial pulmonary fibrosis
in preclinical rat models. ERJ Open Res 2021; 7 (02) 0733-2020
Reference Ris Wihthout Link