RSS-Feed abonnieren
DOI: 10.1055/a-2601-9480
Intestinal Microbes, Metabolites, and Hormones in Alcohol-Associated Liver Disease
Funding This work was supported by the National Natural Science Foundation of China (82003811), the Natural Science Foundation of the Anhui Higher Education Institutions(2023AH050554), and funds from Anhui Medical University (2019xkj002 and XJ201917).

Abstract
Alcohol-associated liver disease (ALD)—encompassing conditions including steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma—refers to hepatic damage arising from excessive or hazardous alcohol consumption, and is now recognized as a significant global health burden. Although the mechanisms underlying ALD remain incompletely understood, several pathways have been substantiated over the last five decades, notably the involvement of intestinal microorganisms and the involvement of the gut–liver axis in alcohol metabolism and ALD pathogenesis. Ethanol intake disrupts the intestinal microbial balance and compromises the gut barrier, resulting in increased permeability to microbial products. The subsequent translocation of microbial metabolites and other antigenic substances to the liver activates hepatic immune responses, thereby contributing to liver injury. In addition, gastrointestinal hormones are also implicated in ALD progression through various mechanisms. Although no therapies for ALD have been approved by the Food and Drug Administration, various therapeutic strategies targeting the intestinal microbiota and gut barrier have been identified. In conclusion, this review discusses the role of the gut–liver axis in alcohol metabolism and ALD pathogenesis and explores the emerging therapeutic strategies.
Keywords
alcohol-associated liver disease - bacterial products - gastrointestinal hormones - microbial therapyAuthors' Contributions
R.W. wrote the original draft and prepared pictures. X.W. and H.W. presented the idea and designed the whole outline of this review and revised the final manuscript. F.M. contributed to table preparation. F.M. and D.Y. participated in manuscript editing and data curation. All authors approved the final manuscript.
Publikationsverlauf
Accepted Manuscript online:
07. Mai 2025
Artikel online veröffentlicht:
21. Mai 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
- 2 Niu X, Zhu L, Xu Y. et al. Global prevalence, incidence, and outcomes of alcohol related liver diseases: a systematic review and meta-analysis. BMC Public Health 2023; 23 (01) 859
- 3 Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin Invest 2024; 134 (03) e176345
- 4 Gao H, Jiang Y, Zeng G. et al. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. eGastroenterology 2024; 2 (04) e100104
- 5 Askgaard G, Leon DA, Kjaer MS, Deleuran T, Gerds TA, Tolstrup JS. Risk for alcoholic liver cirrhosis after an initial hospital contact with alcohol problems: a nationwide prospective cohort study. Hepatology 2017; 65 (03) 929-937
- 6 Askgaard G, Grønbæk M, Kjær MS, Tjønneland A, Tolstrup JS. Alcohol drinking pattern and risk of alcoholic liver cirrhosis: a prospective cohort study. J Hepatol 2015; 62 (05) 1061-1067
- 7 Pemmasani G, Tremaine WJ, Suresh Kumar VC. et al. Sex differences in clinical characteristics and outcomes associated with alcoholic hepatitis. Eur J Gastroenterol Hepatol 2023; 35 (10) 1192-1196
- 8 Fu Y, Mackowiak B, Lin YH. et al. Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption. Nat Metab 2024; 6 (07) 1380-1396
- 9 Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008; 105 (39) 15064-15069
- 10 Chopyk DM, Kumar P, Raeman R, Liu Y, Smith T, Anania FA. Dysregulation of junctional adhesion molecule-A contributes to ethanol-induced barrier disruption in intestinal epithelial cell monolayers. Physiol Rep 2017; 5 (23) e13541
- 11 Elamin E, Masclee A, Dekker J, Jonkers D. Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation. Am J Physiol Gastrointest Liver Physiol 2014; 306 (08) G677-G685
- 12 Ferrier L, Bérard F, Debrauwer L. et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol 2006; 168 (04) 1148-1154
- 13 Wang W, Wang C, Xu H, Gao Y. Aldehyde dehydrogenase, liver disease and cancer. Int J Biol Sci 2020; 16 (06) 921-934
- 14 Cederbaum AI. Alcohol metabolism. Clin Liver Dis 2012; 16 (04) 667-685
- 15 Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci 2021; 22 (11) 5717
- 16 Zakhari S. Overview: how is alcohol metabolized by the body?. Alcohol Res Health 2006; 29 (04) 245-254
- 17 Tuma DJ, Casey CA. Dangerous byproducts of alcohol breakdown-focus on adducts. Alcohol Res Health 2003; 27 (04) 285-290
- 18 Leclercq S, Matamoros S, Cani PD. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 2014; 111 (42) E4485-E4493
- 19 Mutlu EA, Gillevet PM, Rangwala H. et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302 (09) G966-G978
- 20 Duan Y, Llorente C, Lang S. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 2019; 575 (7783) 505-511
- 21 Ghosh G, Jesudian AB. Small intestinal bacterial overgrowth in patients with cirrhosis. J Clin Exp Hepatol 2019; 9 (02) 257-267
- 22 Bull-Otterson L, Feng W, Kirpich I. et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013; 8 (01) e53028
- 23 Grander C, Adolph TE, Wieser V. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018; 67 (05) 891-901
- 24 Philips CA, Pande A, Shasthry SM. et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017; 15 (04) 600-602
- 25 Seitz HK, Simanowski UA, Garzon FT. et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 1990; 98 (02) 406-413
- 26 Martino C, Zaramela LS, Gao B. et al. Acetate reprograms gut microbiota during alcohol consumption. Nat Commun 2022; 13 (01) 4630
- 27 Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 2020; 72 (03) 558-577
- 28 Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol 2017; 35: 119-147
- 29 Furness JB, Kunze WA, Clerc N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: neural, endocrine, and immune responses. Am J Physiol 1999; 277 (05) G922-G928
- 30 Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res 2013; 69 (01) 42-51
- 31 Hayes CL, Dong J, Galipeau HJ. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep 2018; 8 (01) 14184
- 32 Schoultz I, Keita ÅV. The intestinal barrier and current techniques for the assessment of gut permeability. Cells 2020; 9 (08) 1909
- 33 Venugopal S, Anwer S, Szászi K. Claudin-2: roles beyond permeability functions. Int J Mol Sci 2019; 20 (22) 5655
- 34 Tonetti FR, Eguileor A, Llorente C. Goblet cells: guardians of gut immunity and their role in gastrointestinal diseases. eGastroenterology 2024; 2 (03) e100098
- 35 Portincasa P, Bonfrate L, Khalil M. et al. Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines 2021; 10 (01) 83
- 36 Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2010; 12 (05) 319-330
- 37 Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019; 70 (02) 260-272
- 38 Kelly CJ, Zheng L, Campbell EL. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function. Cell Host Microbe 2015; 17 (05) 662-671
- 39 Litvak Y, Mon KKZ, Nguyen H. et al. Commensal enterobacteriaceae protect against salmonella colonization through oxygen competition. Cell Host Microbe 2019; 25 (01) 128-139.e5
- 40 Ueda Y, Kayama H, Jeon SG. et al. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int Immunol 2010; 22 (12) 953-962
- 41 Hoffmann C, Dollive S, Grunberg S. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013; 8 (06) e66019
- 42 Nash AK, Auchtung TA, Wong MC. et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 2017; 5 (01) 153
- 43 Yeung F, Chen YH, Lin JD. et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 2020; 27 (05) 809-822.e6
- 44 Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep 2013; 3: 2191
- 45 Mason KL, Erb Downward JR, Mason KD. et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun 2012; 80 (10) 3371-3380
- 46 Bajaj JS, Liu EJ, Kheradman R. et al. Fungal dysbiosis in cirrhosis. Gut 2018; 67 (06) 1146-1154
- 47 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14 (08) e1002533
- 48 Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 2020; 28 (05) 724-740.e8
- 49 Garmaeva S, Gulyaeva A, Sinha T. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep 2021; 35 (07) 109132
- 50 Metzger RN, Krug AB, Eisenächer K. Enteric virome sensing-its role in intestinal homeostasis and immunity. Viruses 2018; 10 (04) 146
- 51 Keen EC, Dantas G. Close encounters of three kinds: bacteriophages, commensal bacteria, and host immunity. Trends Microbiol 2018; 26 (11) 943-954
- 52 Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep 2017; 7 (01) 7043
- 53 Tetz G, Tetz V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog 2016; 8: 33
- 54 Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 2017; 46 (09) 800-815
- 55 Maccioni L, Fu Y, Horsmans Y. et al. Alcohol-associated bowel disease: new insights into pathogenesis. eGastroenterology 2023; 1 (01) e100013
- 56 Dunagan M, Chaudhry K, Samak G, Rao RK. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012; 303 (12) G1356-G1364
- 57 Li W, Zhou Y, Pang N. et al. NAD supplement alleviates intestinal barrier injury induced by ethanol via protecting epithelial mitochondrial function. Nutrients 2022; 15 (01) 174
- 58 Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015; 61 (03) 883-894
- 59 Chang B, Sang L, Wang Y, Tong J, Wang B. The role of FoxO4 in the relationship between alcohol-induced intestinal barrier dysfunction and liver injury. Int J Mol Med 2013; 31 (03) 569-576
- 60 Rungratanawanich W, Lin Y, Wang X, Kawamoto T, Chidambaram SB, Song BJ. ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness, endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol 2023; 59: 102577
- 61 Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 2012; 590 (03) 447-458
- 62 Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 disrupt the intestinal epithelial barrier through modulation of PPARγ and occludin expression in chronic simian immunodeficiency virus-infected rhesus macaques. J Immunol 2018; 200 (08) 2677-2689
- 63 Tang Y, Banan A, Forsyth CB. et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (02) 355-364
- 64 Forsyth CB, Voigt RM, Shaikh M. et al. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability. Am J Physiol Gastrointest Liver Physiol 2013; 305 (02) G185-G195
- 65 Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut microbiota as emerging players in the development of alcohol-related liver disease. Biomedicines 2024; 13 (01) 74
- 66 Zhou R, Llorente C, Cao J. et al. Deficiency of intestinal α1-2-fucosylation exacerbates ethanol-induced liver disease in mice. Alcohol Clin Exp Res 2020; 44 (09) 1842-1851
- 67 Llopis M, Cassard AM, Wrzosek L. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65 (05) 830-839
- 68 Bala S, Marcos M, Gattu A, Catalano D, Szabo G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One 2014; 9 (05) e96864
- 69 Wang L, Fouts DE, Stärkel P. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 2016; 19 (02) 227-239
- 70 Hartmann P, Chen P, Wang HJ. et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 2013; 58 (01) 108-119
- 71 Hendrikx T, Duan Y, Wang Y. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 2019; 68 (08) 1504-1515
- 72 Bluemel S, Wang L, Kuelbs C. et al. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes 2020; 11 (03) 265-275
- 73 Yan AW, Fouts DE, Brandl J. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53 (01) 96-105
- 74 Chen Y, Yang F, Lu H. et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011; 54 (02) 562-572
- 75 Sokol H, Pigneur B, Watterlot L. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008; 105 (43) 16731-16736
- 76 Llorente C, Jepsen P, Inamine T. et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun 2017; 8 (01) 837
- 77 Zhao ZH, Wang ZX, Zhou D. et al. Sodium butyrate supplementation inhibits hepatic steatosis by stimulating liver kinase B1 and insulin-induced gene. Cell Mol Gastroenterol Hepatol 2021; 12 (03) 857-871
- 78 Rao J, Wang H, Ni M. et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut 2022; 71 (12) 2539-2550
- 79 Qin N, Yang F, Li A. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513 (7516) 59-64
- 80 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (01) 322-335
- 81 Seki E, De Minicis S, Osterreicher CH. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
- 82 Roderburg C, Urban GW, Bettermann K. et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53 (01) 209-218
- 83 Caesar R, Reigstad CS, Bäckhed HK. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 2012; 61 (12) 1701-1707
- 84 Gu M, Samuelson DR, Taylor CM. et al. Alcohol-associated intestinal dysbiosis alters mucosal-associated invariant T-cell phenotype and function. Alcohol Clin Exp Res 2021; 45 (05) 934-947
- 85 Zeng S, Schnabl B. Roles for the mycobiome in liver disease. Liver Int 2022; 42 (04) 729-741
- 86 Lang S, Duan Y, Liu J. et al. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 2020; 71 (02) 522-538
- 87 Hartmann P, Lang S, Zeng S. et al. Dynamic changes of the fungal microbiome in alcohol use disorder. Front Physiol 2021; 12: 699253
- 88 Wu J, Wu D, Ma K. et al. Paeonol ameliorates murine alcohol liver disease via mycobiota-mediated Dectin-1/IL-1β signaling pathway. J Leukoc Biol 2020; 108 (01) 199-214
- 89 Moyes DL, Wilson D, Richardson JP. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016; 532 (7597) 64-68
- 90 Chu H, Duan Y, Lang S. et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J Hepatol 2020; 72 (03) 391-400
- 91 Jiang L, Lang S, Duan Y. et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology 2020; 72 (06) 2182-2196
- 92 Hsu CL, Zhang X, Jiang L. et al. Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatol Commun 2022; 6 (08) 2058-2069
- 93 Mendes BG, Duan Y, Schnabl B. Immune response of an oral enterococcus faecalis phage cocktail in a mouse model of ethanol-induced liver disease. Viruses 2022; 14 (03) 490
- 94 Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with bacteroides phage BV01 alters the host transcriptome and bile acid metabolism in a common human gut microbe. Cell Rep 2020; 32 (11) 108142
- 95 Hartmann P, Hochrath K, Horvath A. et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67 (06) 2150-2166
- 96 Lang S, Schnabl B. Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host Microbe 2020; 28 (02) 233-244
- 97 Friedman ES, Li Y, Shen TD. et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology 2018; 155 (06) 1741-1752.e5
- 98 Inagaki T, Moschetta A, Lee YK. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103 (10) 3920-3925
- 99 Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 2017; 101 (01) 47-64
- 100 Jiang L, Schnabl B. Gut microbiota in liver disease: what do we know and what do we not know?. Physiology (Bethesda) 2020; 35 (04) 261-274
- 101 Wu WB, Chen YY, Zhu B, Peng XM, Zhang SW, Zhou ML. Excessive bile acid activated NF-kappa B and promoted the development of alcoholic steatohepatitis in farnesoid X receptor deficient mice. Biochimie 2015; 115: 86-92
- 102 Zafari N, Velayati M, Fahim M. et al. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305: 120760
- 103 Kakiyama G, Hylemon PB, Zhou H. et al. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol 2014; 306 (11) G929-G937
- 104 Huang M, Kong B, Zhang M. et al. Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor deficiency. Lab Invest 2020; 100 (09) 1158-1168
- 105 Feng S, Xie X, Li J. et al. Bile acids induce liver fibrosis through the NLRP3 inflammasome pathway and the mechanism of FXR inhibition of NLRP3 activation. Hepatol Int 2024; 18 (03) 1040-1052
- 106 Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 2010; 12 (02) 304-314
- 107 Schulthess J, Pandey S, Capitani M. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 2019; 50 (02) 432-445.e7
- 108 Zheng L, Kelly CJ, Battista KD. et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Immunol 2017; 199 (08) 2976-2984
- 109 den Besten G, Bleeker A, Gerding A. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015; 64 (07) 2398-2408
- 110 Cresci GA, Glueck B, McMullen MR, Xin W, Allende D, Nagy LE. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol 2017; 32 (09) 1587-1597
- 111 Chen P, Torralba M, Tan J. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 2015; 148 (01) 203-214.e16
- 112 Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009; 139 (09) 1619-1625
- 113 Gaudier E, Rival M, Buisine MP, Robineau I, Hoebler C. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res 2009; 58 (01) 111-119
- 114 Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 2012; 57 (12) 3126-3135
- 115 Zhuge A, Li S, Han S. et al. Akkermansia muciniphila-derived acetate activates the hepatic AMPK/SIRT1/PGC-1α axis to alleviate ferroptosis in metabolic-associated fatty liver disease. Acta Pharm Sin B 2025; 15 (01) 151-167
- 116 Zelante T, Iannitti RG, Cunha C. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39 (02) 372-385
- 117 Lee JH, Wada T, Febbraio M. et al. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 2010; 139 (02) 653-663
- 118 Lee JS, Cella M, McDonald KG. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13 (02) 144-151
- 119 Tanos R, Murray IA, Smith PB, Patterson A, Perdew GH. Role of the Ah receptor in homeostatic control of fatty acid synthesis in the liver. Toxicol Sci 2012; 129 (02) 372-379
- 120 Wrzosek L, Ciocan D, Hugot C. et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 2021; 70 (07) 1299-1308
- 121 Xu R, Vatsalya V, He L. et al. Altered urinary tryptophan metabolites in alcohol-associated liver disease. Alcohol Clin Exp Res (Hoboken) 2023; 47 (09) 1665-1676
- 122 Hu W, Naimi S, Trainel N. et al. Minibioreactor arrays to model microbiome response to alcohol and tryptophan in the context of alcohol-associated liver disease. NPJ Biofilms Microbiomes 2024; 10 (01) 132
- 123 Liu C, Wang Y, Sheng L. et al. 3-Hydroxypropionaldehyde modulates tryptophan metabolism to activate AhR signaling and alleviate ethanol-induced liver injury. Phytomedicine 2025; 139: 156445
- 124 Helsley RN, Miyata T, Kadam A. et al. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. eLife 2022; 11: e76554
- 125 Ma R, Shi G, Li Y, Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br J Nutr 2024; 131 (11) 1915-1923
- 126 Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. Vitamin B-12 and the gastrointestinal microbiome: a systematic review. Adv Nutr 2022; 13 (02) 530-558
- 127 Muro N, Bujanda L, Sarasqueta C. et al. Niveles plasmáticos de la vitamina B(12) y ácido fólico en pacientes con hepatopatía crónica. [Plasma levels of folate and vitamin B(12) in patients with chronic liver disease]. Gastroenterol Hepatol 2010; 33 (04) 280-287
- 128 Li R, Xie L, Li L. et al. The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice. Acta Pharm Sin B 2022; 12 (01) 182-196
- 129 Yu L, Lu J, Du W. Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications. Cell Commun Signal 2024; 22 (01) 174
- 130 Horst AK, Kumashie KG, Neumann K, Diehl L, Tiegs G. Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2021; 18 (01) 92-111
- 131 Krishnan S, Ding Y, Saedi N. et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 2018; 23 (04) 1099-1111
- 132 Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol 2019; 15 (04) 226-237
- 133 Kharbanda KK, Farokhnia M, Deschaine SL. et al. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: a narrative review. Alcohol Clin Exp Res 2022; 46 (12) 2149-2159
- 134 Rasineni K, Thomes PG, Kubik JL, Harris EN, Kharbanda KK, Casey CA. Chronic alcohol exposure alters circulating insulin and ghrelin levels: role of ghrelin in hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 2019; 316 (04) G453-G461
- 135 Quiñones M, Fernø J, Al-Massadi O. Ghrelin and liver disease. Rev Endocr Metab Disord 2020; 21 (01) 45-56
- 136 Ishioh M, Nozu T, Igarashi S. et al. Activation of central adenosine A2B receptors mediate brain ghrelin-induced improvement of intestinal barrier function through the vagus nerve in rats. Exp Neurol 2021; 341: 113708
- 137 Zhu L, Dou Z, Wu W. et al. Ghrelin/GHSR axis induced M2 macrophage and alleviated intestinal barrier dysfunction in a sepsis rat model by inactivating E2F1/NF-κB signaling. Can J Gastroenterol Hepatol 2023; 2023: 1629777
- 138 Cheng Y, Wei Y, Yang W. et al. Ghrelin attenuates intestinal barrier dysfunction following intracerebral hemorrhage in mice. Int J Mol Sci 2016; 17 (12) 2032
- 139 Kyritsi K, Wu N, Zhou T. et al. Knockout of secretin ameliorates biliary and liver phenotypes during alcohol-induced hepatotoxicity. Cell Biosci 2023; 13 (01) 5
- 140 Chen Y, Xu YN, Ye CY. et al. GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol Sin 2022; 43 (05) 1156-1166
- 141 Kuo CC, Li CH, Chuang MH, Huang PY, Kuo HT, Lai CC. Impact of GLP-1 receptor agonists on alcohol-related liver disease development and progression in alcohol use disorder. Aliment Pharmacol Ther 2025; 61 (08) 1343-1356
- 142 Mahalingam S, Bellamkonda R, Arumugam MK. et al. Glucagon-like peptide 1 receptor agonist, exendin-4, reduces alcohol-associated fatty liver disease. Biochem Pharmacol 2023; 213: 115613
- 143 Connor EE, Evock-Clover CM, Wall EH. et al. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest Anim Endocrinol 2016; 56: S56-S65
- 144 Taher J, Baker C, Alvares D, Ijaz L, Hussain M, Adeli K. GLP-2 dysregulates hepatic lipoprotein metabolism, inducing fatty liver and VLDL overproduction in male hamsters and mice. Endocrinology 2018; 159 (09) 3340-3350
- 145 Musso G, Alberto M, Mariano F. et al. Impaired postprandial GLP-2 response enhances endotoxemia, systemic inflammation, and kidney injury in metabolic dysfunction-associated steatohepatitis (MASH): effect of phospholipid curcumin meriva. Gut Microbes 2024; 16 (01) 2424907
- 146 Fuchs CD, Claudel T, Mlitz V. et al. GLP-2 improves hepatic inflammation and fibrosis in Mdr2−/− mice via activation of NR4a1/Nur77 in hepatic stellate cells and intestinal FXR signaling. Cell Mol Gastroenterol Hepatol 2023; 16 (05) 847-856
- 147 Fuchs S, Yusta B, Baggio LL, Varin EM, Matthews D, Drucker DJ. Loss of Glp2r signaling activates hepatic stellate cells and exacerbates diet-induced steatohepatitis in mice. JCI Insight 2020; 5 (08) e136907
- 148 Kim ER, Park JS, Kim JH. et al. A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome. Hepatology 2022; 75 (06) 1523-1538
- 149 Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res. 2019;8:F1000. Fac Rev 1629
- 150 Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes 2022; 14 (01) 2022407
- 151 Alenghat T, Osborne LC, Saenz SA. et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature 2013; 504 (7478) 153-157
- 152 Tang R, Zha H, Liu R, Lv J, Cao D, Li L. Sodium butyrate attenuates liver fibrogenesis via promoting H4K8 crotonylation. Mol Cell Biochem 2025
- 153 Wu SE, Hashimoto-Hill S, Woo V. et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 2020; 586 (7827) 108-112
- 154 Yang W, Yu T, Huang X. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020; 11 (01) 4457
- 155 Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP Rep Innov Hepatol 2022; 4 (05) 100466
- 156 Virtue AT, McCright SJ, Wright JM. et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med 2019; 11 (496) 1892
- 157 Schueller F, Roy S, Vucur M, Trautwein C, Luedde T, Roderburg C. The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int J Mol Sci 2018; 19 (01) 261
- 158 Tadese DA, Mwangi J, Luo L. et al. The microbiome's influence on obesity: mechanisms and therapeutic potential. Sci China Life Sci 2025; 68 (03) 657-672
- 159 de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 299 (02) G440-G448
- 160 Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102 (31) 11070-11075
- 161 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 (7122) 1022-1023
- 162 Gonzalez-Quintela A, Alonso M, Campos J, Vizcaino L, Loidi L, Gude F. Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One 2013; 8 (01) e54600
- 163 Zou ZY, Hu YR, Ma H. et al. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fitoterapia 2015; 105: 139-146
- 164 Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H. et al. Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 2023; 99 (1171) 384-402
- 165 Ferrere G, Wrzosek L, Cailleux F. et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66 (04) 806-815
- 166 Bajaj JS, Gavis EA, Fagan A. et al. A randomized clinical trial of fecal microbiota transplant for alcohol use disorder. Hepatology 2021; 73 (05) 1688-1700
- 167 Philips CA, Phadke N, Ganesan K, Ranade S, Augustine P. Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian J Gastroenterol 2018; 37 (03) 215-225
- 168 Chayanupatkul M, Somanawat K, Chuaypen N. et al. Probiotics and their beneficial effects on alcohol-induced liver injury in a rat model: the role of fecal microbiota. BMC Complement Med Ther 2022; 22 (01) 168
- 169 Li H, Cheng S, Huo J. et al. Lactobacillus plantarum J26 alleviating alcohol-induced liver inflammation by maintaining the intestinal barrier and regulating MAPK signaling pathways. Nutrients 2022; 15 (01) 190
- 170 Han SH, Suk KT, Kim DJ. et al. Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the treatment of alcoholic hepatitis: randomized-controlled multicenter study. Eur J Gastroenterol Hepatol 2015; 27 (11) 1300-1306
- 171 Bajaj JS, Heuman DM, Hylemon PB. et al. Randomised clinical trial: lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther 2014; 39 (10) 1113-1125
- 172 Stadlbauer V, Mookerjee RP, Hodges S, Wright GA, Davies NA, Jalan R. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J Hepatol 2008; 48 (06) 945-951
- 173 Li X, Liu Y, Guo X, Ma Y, Zhang H, Liang H. Effect of Lactobacillus casei on lipid metabolism and intestinal microflora in patients with alcoholic liver injury. Eur J Clin Nutr 2021; 75 (08) 1227-1236
- 174 Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995; 108 (01) 218-224
- 175 Jiménez C, Ventura-Cots M, Sala M. et al. Effect of rifaximin on infections, acute-on-chronic liver failure and mortality in alcoholic hepatitis: a pilot study (RIFA-AH). Liver Int 2022; 42 (05) 1109-1120
- 176 Vlachogiannakos J, Viazis N, Vasianopoulou P, Vafiadis I, Karamanolis DG, Ladas SD. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J Gastroenterol Hepatol 2013; 28 (03) 450-455
- 177 Kalambokis GN, Mouzaki A, Rodi M, Tsianos EV. Rifaximin improves thrombocytopenia in patients with alcoholic cirrhosis in association with reduction of endotoxaemia. Liver Int 2012; 32 (03) 467-475
- 178 Louvet A, Labreuche J, Dao T. et al. Effect of prophylactic antibiotics on mortality in severe alcohol-related hepatitis: a randomized clinical trial. JAMA 2023; 329 (18) 1558-1566
- 179 Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6 (11) e280
- 180 Anand G, Zarrinpar A, Loomba R. Targeting dysbiosis for the treatment of liver disease. Semin Liver Dis 2016; 36 (01) 37-47
- 181 Riggio O, Varriale M, Testore GP. et al. Effect of lactitol and lactulose administration on the fecal flora in cirrhotic patients. J Clin Gastroenterol 1990; 12 (04) 433-436
- 182 Vandeputte D, Falony G, Vieira-Silva S. et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017; 66 (11) 1968-1974
- 183 Sergeev IN, Aljutaily T, Walton G, Huarte E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 2020; 12 (01) 222
- 184 Patel D, Desai C, Singh D. et al. Synbiotic intervention ameliorates oxidative stress and gut permeability in an in vitro and in vivo model of ethanol-induced intestinal dysbiosis. Biomedicines 2022; 10 (12) 3285
- 185 Guo P, Xue M, Teng X. et al. Antarctic krill oil ameliorates liver injury in rats exposed to alcohol by regulating bile acids metabolism and gut microbiota. J Nutr Biochem 2022; 107: 109061
- 186 Zhong W, Li Q, Sun Q. et al. Preventing gut leakiness and endotoxemia contributes to the protective effect of zinc on alcohol-induced steatohepatitis in rats. J Nutr 2015; 145 (12) 2690-2698
- 187 Shen H, Zhou L, Zhang H. et al. Dietary fiber alleviates alcoholic liver injury via Bacteroides acidifaciens and subsequent ammonia detoxification. Cell Host Microbe 2024; 32 (08) 1331-1346.e6
- 188 Chuong V, Farokhnia M, Khom S. et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 2023; 8 (12) e170671
- 189 Quddos F, Hubshman Z, Tegge A. et al. Semaglutide and Tirzepatide reduce alcohol consumption in individuals with obesity. Sci Rep 2023; 13 (01) 20998
- 190 Shuwen H, Kefeng D. Intestinal phages interact with bacteria and are involved in human diseases. Gut Microbes 2022; 14 (01) 2113717
- 191 Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol 2019; 10: 574
- 192 Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2022; 19 (02) 135-144
- 193 Sweere JM, Van Belleghem JD, Ishak H. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 2019; 363 (6434) eaat9691
- 194 Wu Q, Li P, Li X, Ma L, Chen K, Man S. Pueraria extract ameliorates alcoholic liver disease via the liver-gut-brain axis: focus on restoring the intestinal barrier and inhibiting alcohol metabolism. J Agric Food Chem 2024; 72 (44) 24449-24462
- 195 Zhang H, Li C, Han L. et al. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. Gut Microbes 2024; 16 (01) 2367342
- 196 Shen X, Shi C, Xu J. et al. Intestinal microbiota homeostasis analysis in riboflavin-treated alcoholic liver disease. Commun Biol 2024; 7 (01) 1030
- 197 Su J, Dai Y, Wu X. et al. Maslinic acid alleviates alcoholic liver injury in mice and regulates intestinal microbiota via the gut-liver axis. J Sci Food Agric 2024; 104 (13) 7928-7938
- 198 Kouno T, Zeng S, Wang Y. et al. Engineered bacteria producing aryl-hydrocarbon receptor agonists protect against ethanol-induced liver disease in mice. Alcohol Clin Exp Res (Hoboken) 2023; 47 (05) 856-867