Subscribe to RSS

DOI: 10.1055/a-2609-3457
Targeting Neutrophil Extracellular Traps: A New Strategy for the Treatment of Acute Ischemic Stroke Based on Thrombolysis Resistance
Funding This research was supported by Zhejiang Provincial Medical and Health Science and Technology Program Project (2025KY1581) and Jiaxing First Hospital Supporting Discipline—Neurology (2023-ZC-006).

Abstract
Acute ischemic stroke (AIS) is a life-threatening thrombotic disorder, with intravenous thrombolysis (IVT) serving as the first-line treatment during its acute phase. However, thrombolysis resistance diminishes the success rate of early reperfusion. Recent studies have highlighted neutrophil extracellular traps (NETs) as a critical factor contributing to thrombolysis resistance. Targeting NETs with deoxyribonuclease I (DNase I) has been shown to significantly improve the thrombolytic efficacy of recombinant tissue plasminogen activator (rt-PA) and reduce the risk of hemorrhagic transformation. In this review, we summarize current knowledge on the mechanisms by which NETs contribute to thrombosis and thrombolysis resistance, explore the prospective and feasibility of targeting NETs to improve thrombolysis, providing information about the creation of innovative thrombolytic treatment approaches for AIS.
Keywords
neutrophil extracellular traps - acute ischemic stroke - thrombolysis resistance - deoxyribonuclease I - intravenous thrombolysis* These authors contributed equally to this article.
Publication History
Received: 30 January 2025
Accepted: 06 May 2025
Article published online:
03 June 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024; 403 (10440): 2100-2132
- 2 GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024; 403 (10440): 2133-2161
- 3 GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol 2024; 23 (10) 973-1003
- 4 Powers WJ, Rabinstein AA, Ackerson T. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50 (12) e344-e418
- 5 Aguiar de Sousa D, von Martial R, Abilleira S. et al. Access to and delivery of acute ischaemic stroke treatments: a survey of national scientific societies and stroke experts in 44 European countries. Eur Stroke J 2019; 4 (01) 13-28
- 6 Seners P, Turc G, Maïer B, Mas JL, Oppenheim C, Baron JC. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 2016; 47 (09) 2409-2412
- 7 Loyau S, Ho-Tin-Noé B, Bourrienne MC, Boulaftali Y, Jandrot-Perrus M. Microfluidic modeling of thrombolysis. Arterioscler Thromb Vasc Biol 2018; 38 (11) 2626-2637
- 8 Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011; 42 (06) 1775-1777
- 9 Binder V, Bergum B, Jaisson S. et al. Impact of fibrinogen carbamylation on fibrin clot formation and stability. Thromb Haemost 2017; 117 (05) 899-910
- 10 Risman RA, Abdelhamid A, Weisel JW, Bannish BE, Tutwiler V. Effects of clot contraction on clot degradation: a mathematical and experimental approach. Biophys J 2022; 121 (17) 3271-3285
- 11 Desilles JP, Di Meglio L, Delvoye F. et al. Composition and organization of acute ischemic stroke thrombus: a wealth of information for future thrombolytic strategies. Front Neurol 2022; 13: 870331
- 12 Staessens S, Denorme F, Francois O. et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica 2020; 105 (02) 498-507
- 13 Ho-Tin-Noé B, Desilles JP, Mazighi M. Thrombus composition and thrombolysis resistance in stroke. Res Pract Thromb Haemost 2023; 7 (04) 100178
- 14 Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol 2009; 30 (11) 513-521
- 15 Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23 (03) 279-287
- 16 Cai W, Liu S, Hu M. et al. Functional dynamics of neutrophils after ischemic stroke. Transl Stroke Res 2020; 11 (01) 108-121
- 17 Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M. et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 2015; 129 (02) 239-257
- 18 Vallés J, Lago A, Santos MT. et al. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost 2017; 117 (10) 1919-1929
- 19 Lin S, Chunxiao W, Li S. et al. Relationship between thrombus vWF and NETs with clinical severity and peripheral blood immunocytes' indicators in patients with acute ischemic stroke. Interv Neuroradiol 2024; :15910199241258374. Epub ahead of print
- 20 Novotny J, Oberdieck P, Titova A. et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology 2020; 94 (22) e2346-e2360
- 21 Mereweather LJ, Constantinescu-Bercu A, Crawley JTB, Salles-Crawley II. Platelet-neutrophil crosstalk in thrombosis. Int J Mol Sci 2023; 24 (02) 1266
- 22 Döring Y, Manthey HD, Drechsler M. et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 2012; 125 (13) 1673-1683
- 23 Gould TJ, Vu TT, Swystun LL. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
- 24 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
- 25 Di Meglio L, Desilles JP, Ollivier V. et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology 2019; 93 (18) e1686-e1698
- 26 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663) 1532-1535
- 27 Bianchi M, Hakkim A, Brinkmann V. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009; 114 (13) 2619-2622
- 28 Fuchs TA, Abed U, Goosmann C. et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
- 29 Khan MA, Farahvash A, Douda DN. et al. JNK activation turns on LPS- and Gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis. Sci Rep 2017; 7 (01) 3409
- 30 Pieterse E, Rother N, Yanginlar C, Hilbrands LB, van der Vlag J. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front Immunol 2016; 7: 484
- 31 Chen KW, Monteleone M, Boucher D. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol 2018; 3 (26) eaar6676
- 32 Pilsczek FH, Salina D, Poon KK. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
- 33 Zawrotniak M, Bochenska O, Karkowska-Kuleta J. et al. Aspartic proteases and major cell wall components in Candida albicans trigger the release of neutrophil extracellular traps. Front Cell Infect Microbiol 2017; 7: 414
- 34 Muraro SP, De Souza GF, Gallo SW. et al. Respiratory syncytial virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci Rep 2018; 8 (01) 14166
- 35 Behnen M, Leschczyk C, Möller S. et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J Immunol 2014; 193 (04) 1954-1965
- 36 Keshari RS, Jyoti A, Dubey M. et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One 2012; 7 (10) e48111
- 37 Ma Q, Steiger S. Neutrophils and extracellular traps in crystal-associated diseases. Trends Mol Med 2024; 30 (09) 809-823
- 38 Hakkim A, Fuchs TA, Martinez NE. et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 2011; 7 (02) 75-77
- 39 Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 2014; 8 (03) 883-896
- 40 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
- 41 Wang Y, Li M, Stadler S. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184 (02) 205-213
- 42 Leshner M, Wang S, Lewis C. et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 2012; 3: 307
- 43 Sollberger G, Choidas A, Burn GL. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 2018; 3 (26) eaar6689
- 44 Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol 2017; 8: 81
- 45 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
- 46 Yipp BG, Petri B, Salina D. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
- 47 Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009; 16 (11) 1438-1444
- 48 Vorobjeva N, Galkin I, Pletjushkina O. et al. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis 2020; 1866 (05) 165664
- 49 Albrengues J, Shields MA, Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361 (6409) eaao4227
- 50 Li C, Xing Y, Zhang Y, Hua Y, Hu J, Bai Y. Neutrophil extracellular traps exacerbate ischemic brain damage. Mol Neurobiol 2022; 59 (01) 643-656
- 51 Chu HX, Kim HA, Lee S. et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 2014; 34 (03) 450-459
- 52 Cha MJ, Ha J, Lee H. et al. Neutrophil recruitment in arterial thrombus and characteristics of stroke patients with neutrophil-rich thrombus. Yonsei Med J 2022; 63 (11) 1016-1026
- 53 De Wilde M, Desender L, Tersteeg C, Vanhoorelbeke K, De Meyer SF. Spatiotemporal profile of neutrophil extracellular trap formation in a mouse model of ischemic stroke. Res Pract Thromb Haemost 2022; 7 (01) 100028
- 54 Kim SW, Lee H, Lee HK, Kim ID, Lee JK. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 2019; 7 (01) 94
- 55 Kang L, Yu H, Yang X. et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 2020; 11 (01) 2488
- 56 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
- 57 Gaertner F, Massberg S. Blood coagulation in immunothrombosis—at the frontline of intravascular immunity. Semin Immunol 2016; 28 (06) 561-569
- 58 Mangold A, Alias S, Scherz T. et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 2015; 116 (07) 1182-1192
- 59 Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost 2019; 45 (01) 86-93
- 60 Laridan E, Denorme F, Desender L. et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 2017; 82 (02) 223-232
- 61 Ducroux C, Di Meglio L, Loyau S. et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 2018; 49 (03) 754-757
- 62 McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012; 12 (03) 324-333
- 63 Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 2009; 102 (02) 248-257
- 64 Evangelista V, Manarini S, Sideri R. et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 1999; 93 (03) 876-885
- 65 Kuijper PH, Gallardo Tores HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet associated fibrinogen and ICAM-2 induce firm adhesion of neutrophils under flow conditions. Thromb Haemost 1998; 80 (03) 443-448
- 66 Simon DI, Chen Z, Xu H. et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192 (02) 193-204
- 67 Stark K, Philippi V, Stockhausen S. et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128 (20) 2435-2449
- 68 Karshovska E, Weber C, von Hundelshausen P. Platelet chemokines in health and disease. Thromb Haemost 2013; 110 (05) 894-902
- 69 Duerschmied D, Suidan GL, Demers M. et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013; 121 (06) 1008-1015
- 70 Pircher J, Czermak T, Ehrlich A. et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun 2018; 9 (01) 1523
- 71 Semeraro F, Ammollo CT, Morrissey JH. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
- 72 Carestia A, Rivadeneyra L, Romaniuk MA, Fondevila C, Negrotto S, Schattner M. Functional responses and molecular mechanisms involved in histone-mediated platelet activation. Thromb Haemost 2013; 110 (05) 1035-1045
- 73 Pircher J, Engelmann B, Massberg S, Schulz C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb Haemost 2019; 119 (08) 1274-1282
- 74 Zhang G, Han J, Welch EJ. et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182 (12) 7997-8004
- 75 Vogel S, Bodenstein R, Chen Q. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12) 4638-4654
- 76 Maugeri N, Campana L, Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
- 77 Ma YH, Ma TT, Wang C. et al. High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther 2016; 18: 2
- 78 Vu TT, Leslie BA, Stafford AR, Zhou J, Fredenburgh JC, Weitz JI. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. Thromb Haemost 2016; 115 (01) 89-98
- 79 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
- 80 Noubouossie DF, Whelihan MF, Yu YB. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017; 129 (08) 1021-1029
- 81 Massberg S, Grahl L, von Bruehl ML. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
- 82 Yang X, Li L, Liu J, Lv B, Chen F. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1. Thromb Res 2016; 137: 211-218
- 83 Zhou P, Li T, Jin J. et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion. EBioMedicine 2020; 53: 102671
- 84 Gao X, Zhao X, Li J. et al. Neutrophil extracellular traps mediated by platelet microvesicles promote thrombosis and brain injury in acute ischemic stroke. Cell Commun Signal 2024; 22 (01) 50
- 85 Campbell BCV, De Silva DA, Macleod MR. et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5 (01) 70
- 86 Oklu R, Stone JR, Albadawi H, Watkins MT. Extracellular traps in lipid-rich lesions of carotid atherosclerotic plaques: implications for lipoprotein retention and lesion progression. J Vasc Interv Radiol 2014; 25 (04) 631-634
- 87 Liu Y, Carmona-Rivera C, Moore E. et al. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front Immunol 2018; 9: 1680
- 88 Knight JS, Luo W, O'Dell AA. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114 (06) 947-956
- 89 Franck G, Mawson TL, Folco EJ. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123 (01) 33-42
- 90 Gupta AK, Joshi MB, Philippova M. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14) 3193-3197
- 91 Saffarzadeh M, Juenemann C, Queisser MA. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7 (02) e32366
- 92 Wang YC, Lu YB, Huang XL. et al. Myeloperoxidase: a new target for the treatment of stroke?. Neural Regen Res 2022; 17 (08) 1711-1716
- 93 Tangeten C, Zouaoui Boudjeltia K, Delporte C, Van Antwerpen P, Korpak K. Unexpected role of MPO-oxidized LDLs in atherosclerosis: in between inflammation and its resolution. Antioxidants 2022; 11 (05) 874
- 94 Awasthi D, Nagarkoti S, Kumar A. et al. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med 2016; 93: 190-203
- 95 Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245) 316-320
- 96 Baratchi S, Danish H, Chheang C. et al. Piezo1 expression in neutrophils regulates shear-induced NETosis. Nat Commun 2024; 15 (01) 7023
- 97 Mustanoja S, Meretoja A, Putaala J. et al; Helsinki Stroke Thrombolysis Registry Group. Outcome by stroke etiology in patients receiving thrombolytic treatment: descriptive subtype analysis. Stroke 2011; 42 (01) 102-106
- 98 Vandelanotte S, François O, Desender L. et al. R-tPA resistance is specific for platelet-rich stroke thrombi and can be overcome by targeting nonfibrin components. Stroke 2024; 55 (05) 1181-1190
- 99 Brinjikji W, Madalina Mereuta O, Dai D. et al. Mechanisms of fibrinolysis resistance and potential targets for thrombolysis in acute ischaemic stroke: lessons from retrieved stroke emboli. Stroke Vasc Neurol 2021; 6 (04) 658-667
- 100 Pir GJ, Parray A, Ayadathil R. et al. Platelet-neutrophil association in NETs-rich areas in the retrieved AIS patient thrombi. Int J Mol Sci 2022; 23 (22) 14477
- 101 Sporns PB, Hanning U, Schwindt W. et al. Ischemic stroke: what does the histological composition tell us about the origin of the thrombus?. Stroke 2017; 48 (08) 2206-2210
- 102 Boeckh-Behrens T, Kleine JF, Zimmer C. et al. Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke 2016; 47 (07) 1864-1871
- 103 Jabrah D, Rossi R, Molina S. et al. White blood cell subtypes and neutrophil extracellular traps content as biomarkers for stroke etiology in acute ischemic stroke clots retrieved by mechanical thrombectomy. Thromb Res 2024; 234: 1-8
- 104 Choi MH, Park GH, Lee JS. et al. Erythrocyte fraction within retrieved thrombi contributes to thrombolytic response in acute ischemic stroke. Stroke 2018; 49 (03) 652-659
- 105 Varjú I, Longstaff C, Szabó L. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost 2015; 113 (06) 1289-1298
- 106 Longstaff C, Varjú I, Sótonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 2013; 288 (10) 6946-6956
- 107 Zhang S, Cao Y, Du J. et al. Neutrophil extracellular traps contribute to tissue plasminogen activator resistance in acute ischemic stroke. FASEB J 2021; 35 (09) e21835
- 108 Doche E, Sulowski C, Guigonis JM. et al; Retro-MATISSE Collaborators. How clot composition influences fibrinolysis in the acute phase of stroke: a proteomic study of cerebral thrombi. Stroke 2024; 55 (07) 1818-1829
- 109 Zeng H, Fu X, Cai J. et al. Neutrophil extracellular traps may be a potential target for treating early brain injury in subarachnoid hemorrhage. Transl Stroke Res 2022; 13 (01) 112-131
- 110 Perdomo J, Leung HHL, Ahmadi Z. et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun 2019; 10 (01) 1322
- 111 Denorme F, Portier I, Rustad JL. et al. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 2022; 132 (10) e154225
- 112 Mohammed BM, Fisher BJ, Kraskauskas D. et al. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients 2013; 5 (08) 3131-3151
- 113 Tripathi S, Nath M, Misra S, Kumar P. From A to E: uniting vitamins against stroke risk—a systematic review and network meta-analysis. Eur J Clin Invest 2024; 54 (06) e14165
- 114 Huang Y, Zhang X, Zhang C. et al. Edaravone dexborneol downregulates neutrophil extracellular trap expression and ameliorates blood-brain barrier permeability in acute ischemic stroke. Mediators Inflamm 2022; 2022: 3855698
- 115 Volpi S, Carnovale V, Colombo C, Raia V, Blasi F, Pappagallo G. PULMOCARE TEAM. Use of mucoactive agents in cystic fibrosis: a consensus survey of Italian specialists. Health Sci Rep 2022; 5 (04) e604
- 116 Yang C, Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev 2021; 3 (03) CD001127
- 117 Aksenova MS, Bocharova EN, Abbasova SG. et al. A study of the comparability of the pharmacodynamic, toxicological, and pharmacokinetic properties of the reference drug Pulmozyme® and the biosimilar drug Tigerase®. Dokl Biochem Biophys 2024; 519 (01) 525-533
- 118 Mengozzi L, Barison I, Malý M. et al. Neutrophil extracellular traps and thrombolysis resistance: new insights for targeting therapies. Stroke 2024; 55 (04) 963-971
- 119 Peña-Martínez C, Durán-Laforet V, García-Culebras A. et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke 2019; 50 (11) 3228-3237
- 120 Akkipeddi SMK, Rahmani R, Ellens NR. et al. Histone content, and thus DNA content, is associated with differential in vitro lysis of acute ischemic stroke clots. J Thromb Haemost 2024; 22 (05) 1410-1420
- 121 Napirei M, Ludwig S, Mezrhab J, Klöckl T, Mannherz HG. Murine serum nucleases—contrasting effects of plasmin and heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3). FEBS J 2009; 276 (04) 1059-1073
- 122 Desilles JP, Solo Nomenjanahary M, Consoli A. et al; compoCLOT study group. Impact of COVID-19 on thrombus composition and response to thrombolysis: Insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke. J Thromb Haemost 2022; 20 (04) 919-928
- 123 El Amki M, Glück C, Binder N. et al. Neutrophils obstructing brain capillaries are a major cause of no-reflow in ischemic stroke. Cell Rep 2020; 33 (02) 108260
- 124 Weisenburger-Lile D, Dong Y, Yger M. et al. Harmful neutrophil subsets in patients with ischemic stroke: association with disease severity. Neurol Neuroimmunol Neuroinflamm 2019; 6 (04) e571
- 125 Wang R, Zhu Y, Liu Z. et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021; 138 (01) 91-103
- 126 Huang Y, Han Z, Shen T. et al. Neutrophil migration participates in the side effect of recombinant human tissue plasminogen activator. CNS Neurosci Ther 2024; 30 (07) e14825
- 127 Martinez de Lizarrondo S, Gakuba C, Herbig BA. et al. Potent thrombolytic effect of N-acetylcysteine on arterial thrombi. Circulation 2017; 136 (07) 646-660
- 128 Kim D, Shea SM, Ku DN. Lysis of arterial thrombi by perfusion of N,N′-Diacetyl-L-cystine (DiNAC). PLoS One 2021; 16 (02) e0247496
- 129 Denorme F, Langhauser F, Desender L. et al. ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood 2016; 127 (19) 2337-2345
- 130 Wyseure T, Rubio M, Denorme F. et al. Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood 2015; 125 (08) 1325-1332
- 131 Sakai N, Takeuchi M, Imamura H. et al. Safety, pharmacokinetics and pharmacodynamics of DS-1040, in combination with thrombectomy, in Japanese patients with acute ischemic stroke. Clin Drug Investig 2022; 42 (02) 137-149
- 132 Reed GL, Houng AK, Singh S, Wang D. α2-Antiplasmin: new insights and opportunities for ischemic stroke. Semin Thromb Hemost 2017; 43 (02) 191-199
- 133 Genchi A, Semerano A, Gullotta GS. et al. Cerebral thrombi of cardioembolic etiology have an increased content of neutrophil extracellular traps. J Neurol Sci 2021; 423: 117355
- 134 Di Meglio L, Desilles JP, Solonomenjanahary M. et al; compoCLOT study group†. DNA content in ischemic stroke thrombi can help identify cardioembolic strokes among strokes of undetermined cause. Stroke 2020; 51 (09) 2810-2816
- 135 Essig F, Kollikowski AM, Pham M. et al. Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke. Int J Mol Sci 2020; 21 (19) 7387
- 136 Baumann T, de Buhr N, Blume N. et al. Assessment of associations between neutrophil extracellular trap biomarkers in blood and thrombi in acute ischemic stroke patients. J Thromb Thrombolysis 2024; 57 (06) 936-946
- 137 Masuda S, Nakazawa D, Shida H. et al. NETosis markers: quest for specific, objective, and quantitative markers. Clin Chim Acta 2016; 459: 89-93