Subscribe to RSS

DOI: 10.1055/a-2613-0489
Revisiting Genomic Instability, Tumor Microenvironment and Immune Response in High-Grade Serous Ovarian Cancer
Neue Überlegungen zu genomischer Instabilität, Tumormikromilieu und Immunreaktion bei hochgradigen serösen OvarialkarzinomenSupported by: Else Kröner-Fresenius-Stiftung
Supported by: Federation of European Biochemical Societies FEBS Excellence Award
Supported by: Deutsche Forschungsgemeinschaft FOR5504, FOR5504/1

Abstract
High-grade serous tubo-ovarian cancer is the most common and aggressive type of ovarian cancer characterized by extensive genomic instability and marked inter- and intra-patient tumor heterogeneity. Tumor-site specific signaling crosstalk between cancer cells and the tumor microenvironment influences different tumor ecosystems that drive therapy response and disease progression. Cancer cell-intrinsic genomic aberrations further contribute to the diversity of the tumor immune landscape. Homologous recombination deficiency is considered a key oncogenic driver in 50% of the cases underlying distinctive mechanisms of tumor evolution. The heterogenous character of the tumor microenvironment represents a major challenge to identify predictive biomarkers of therapy response and to stratify subgroups amenable to immunotherapies.
Zusammenfassung
Das hochgradige seröse Tubo-Ovarialkarzinom ist die häufigste und aggressivste Art des Ovarialkarzinoms. Gekennzeichnet ist diese Tumorart durch genomische Instabilität sowie eine ausgeprägte Tumorheterogenität zwischen verschiedenen Patientinnen und verschiedenen Tumorlokalisationen innerhalb einer Patientin. In unterschiedlichen Tumorlokalisationen beeinflussen spezifische Signalwege zwischen Krebszellen und dem Tumormikromilieu verschiedene Tumorekosysteme, die sich auf das Therapieansprechen und die Krankheitsprogression auswirken. Krebszellenspezifische genomische Defekte tragen zusätzlich zur Diversität der Tumor-Immunantwort bei. Eine homologe Rekombinationsdefizienz gilt in 50% der Fälle als wichtiger onkogener Faktor für unterschiedliche Mechanismen der Tumorevolution. Der heterogene Charakter dieser Tumormikromilieus stellt eine große Herausforderung dar bei der Identifizierung von prädiktiven Biomarkern für das Therapieansprechen und bei der Stratifikation von Untergruppen, die auf eine Immuntherapie ansprechen.
Keywords
high-grade serous ovarian cancer - genomic instability - immune response - tumor heterogeneitySchlüsselwörter
hochgradiges seröses Ovarialkarzinom - genomische Instabilität - Immunreaktion - TumorheterogenitätPublication History
Received: 11 January 2025
Accepted after revision: 11 May 2025
Article published online:
11 June 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Robert Koch-Institut, Zentrum für Krebsregisterdaten. Eierstockkrebs (Ovarialkarzinom) 2022. Accessed October 22, 2024 at: https://www.krebsdaten.de/Krebs/DE/Content/Krebsarten/Eierstockkrebs/eierstockkrebs.html
- 2 Cancer Statistics Explorer Network. SEER*Explorer: An interactive website for SEER cancer statistics. Accessed December 16, 2024 at: https://seer.cancer.gov/statistics-network/explorer/
- 3 Ahmed AA, Etemadmoghadam D, Temple J. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 2010; 221: 49-56
- 4 Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609-615
- 5 Chui MH, Momeni Boroujeni A, Mandelker D. et al. Characterization of TP53-wildtype tubo-ovarian high-grade serous carcinomas: rare exceptions to the binary classification of ovarian serous carcinoma. Mod Pathol 2021; 34: 490-501
- 6 Contos G, Baca Y, Xiu J. et al. Assessment of immune biomarkers and establishing a triple negative phenotype in gynecologic cancers. Gynecol Oncol 2021; 163: 312-319
- 7 Birkbak NJ, Wang ZC, Kim JY. et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2012; 2: 366-375
- 8 Popova T, Manie E, Rieunier G. et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 2012; 72: 5454-5462
- 9 Abkevich V, Timms KM, Hennessy BT. et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 2012; 107: 1776-1782
- 10 Knijnenburg TA, Wang L, Zimmermann MT. et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep 2018; 23: 239-254.e6
- 11 Wang YK, Bashashati A, Anglesio MS. et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet 2017; 49: 856-865
- 12 Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem 2018; 293: 10502-10511
- 13 Klaric JA, Wust S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8: 668821
- 14 Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition not equal deletion. Cell Biosci 2020; 10: 8
- 15 Zhao F, Kim W, Kloeber JA. et al. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52: 1705-1714
- 16 Jaspers JE, Kersbergen A, Boon U. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 2013; 3: 68-81
- 17 Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci 2021; 23: 348
- 18 Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 2020; 21: 284-299
- 19 Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55: 745-754
- 20 Elbakry A, Lobrich M. Homologous Recombination Subpathways: A Tangle to Resolve. Front Genet 2021; 12: 723847
- 21 Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 2008; 18: 99-113
- 22 Sanchez A, Reginato G, Cejka P. Crossover or non-crossover outcomes: tailored processing of homologous recombination intermediates. Curr Opin Genet Dev 2021; 71: 39-47
- 23 Konstantinopoulos PA, Ceccaldi R, Shapiro GI. et al. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov 2015; 5: 1137-1154
- 24 Gee ME, Faraahi Z, McCormick A. et al. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018; 11: 50
- 25 Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017; 355: 1152-1158
- 26 DiSilvestro P, Banerjee S, Colombo N. et al. Overall Survival With Maintenance Olaparib at a 7-Year Follow-Up in Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial. J Clin Oncol 2023; 41: 609-617
- 27 Moore K, Colombo N, Scambia G. et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med 2018; 379: 2495-2505
- 28 Monk BJ, Parkinson C, Lim MC. et al. A Randomized, Phase III Trial to Evaluate Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J Clin Oncol 2022; 40: 3952-3964
- 29 Lorusso D, Mouret-Reynier MA, Harter P. et al. Updated progression-free survival and final overall survival with maintenance olaparib plus bevacizumab according to clinical risk in patients with newly diagnosed advanced ovarian cancer in the phase III PAOLA-1/ENGOT-ov25 trial. Int J Gynecol Cancer 2024; 34: 550-558
- 30 Gonzalez-Martin A, Pothuri B, Vergote I. et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med 2019; 381: 2391-2402
- 31 McGee J, Bookman M, Harter P. et al. Fifth Ovarian Cancer Consensus Conference: individualized therapy and patient factors. Ann Oncol 2017; 28: 702-710
- 32 Gonzalez-Martin A, Harter P, Leary A. et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34: 833-848
- 33 Baert T, Ferrero A, Sehouli J. et al. The systemic treatment of recurrent ovarian cancer revisited. Ann Oncol 2021; 32: 710-725
- 34 Galluzzi L, Senovilla L, Vitale I. et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31: 1869-1883
- 35 Huang D, Savage SR, Calinawan AP. et al. A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40: 6395-6405
- 36 Patch AM, Christie EL, Etemadmoghadam D. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015; 521: 489-494
- 37 Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer 2021; 21: 37-50
- 38 Cooke SL, Brenton JD. Evolution of platinum resistance in high-grade serous ovarian cancer. Lancet Oncol 2011; 12: 1169-1174
- 39 Maxwell KN, Wubbenhorst B, Wenz BM. et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun 2017; 8: 319
- 40 Weberpals JI, Pugh TJ, Marco-Casanova P. et al. Tumor genomic, transcriptomic, and immune profiling characterizes differential response to first-line platinum chemotherapy in high grade serous ovarian cancer. Cancer Med 2021; 10: 3045-3058
- 41 Sung HY, Han J, Chae YJ. et al. Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance. BMB Rep 2023; 56: 347-352
- 42 Smith P, Bradley T, Gavarro LM. et al. The copy number and mutational landscape of recurrent ovarian high-grade serous carcinoma. Nat Commun 2023; 14: 4387
- 43 Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 2010; 5: 2
- 44 Karst AM, Jones PM, Vena N. et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res 2014; 74: 1141-1152
- 45 Brown VE, Moore SL, Chen M. et al. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination. NAR Cancer 2023; 5: zcad039
- 46 Kang EY, Weir A, Meagher NS. et al. CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study. Cancer 2023; 129: 697-713
- 47 Macintyre G, Goranova TE, De Silva D. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 2018; 50: 1262-1270
- 48 Jamalzadeh S, Dai J, Lavikka K. et al. Genome-wide quantification of copy-number aberration impact on gene expression in ovarian high-grade serous carcinoma. BMC Cancer 2024; 24: 173
- 49 Rinne N, Christie EL, Ardasheva A. et al. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. Cancer Drug Resist 2021; 4: 573-595
- 50 Garsed DW, Pandey A, Fereday S. et al. The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer. Nat Genet 2022; 54: 1853-1864
- 51 Chowdhury S, Kennedy JJ, Ivey RG. et al. Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell 2023; 186: 3476-3498.e35
- 52 Bouwman P, Jonkers J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors?. Clin Cancer Res 2014; 20: 540-547
- 53 Kondrashova O, Nguyen M, Shield-Artin K. et al. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov 2017; 7: 984-998
- 54 Norquist B, Wurz KA, Pennil CC. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 2011; 29: 3008-3015
- 55 Swisher EM, Kwan TT, Oza AM. et al. Molecular and clinical determinants of response and resistance to rucaparib for recurrent ovarian cancer treatment in ARIEL2 (Parts 1 and 2). Nat Commun 2021; 12: 2487
- 56 Burdett NL, Willis MO, Alsop K. et al. Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer. Nat Genet 2023; 55: 437-450
- 57 Wang Y, Bernhardy AJ, Cruz C. et al. The BRCA1-Delta11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin. Cancer Res 2016; 76: 2778-2790
- 58 Zatreanu D, Robinson HMR, Alkhatib O. et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun 2021; 12: 3636
- 59 Frenel JS, Kim JW, Aryal N. et al. Efficacy of subsequent chemotherapy for patients with BRCA1/2-mutated recurrent epithelial ovarian cancer progressing on olaparib versus placebo maintenance: post-hoc analyses of the SOLO2/ENGOT Ov-21 trial. Ann Oncol 2022; 33: 1021-1028
- 60 Gadducci A, Cosio S, Landoni F. et al. Response to Chemotherapy and Clinical Outcome of Patients With Recurrent Epithelial Ovarian Cancer After PARP Inhibitor Maintenance Treatment: A Multicenter Retrospective Italian Study. Anticancer Res 2022; 42: 2017-2022
- 61 Xu-Vuillard A, Guerin-Charbonnel C, Bocquet F. et al. Efficacy of chemotherapy after progression during or following PARPi exposure in ovarian cancer. ESMO Open 2024; 9: 103694
- 62 Kristeleit R, Lisyanskaya A, Fedenko A. et al. Rucaparib versus standard-of-care chemotherapy in patients with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial. Lancet Oncol 2022; 23: 465-478
- 63 Tobalina L, Armenia J, Irving E. et al. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol 2021; 32: 103-112
- 64 Pettitt SJ, Frankum JR, Punta M. et al. Clinical BRCA1/2 Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Discov 2020; 10: 1475-1488
- 65 Lheureux S, Oaknin A, Garg S. et al. EVOLVE: A Multicenter Open-Label Single-Arm Clinical and Translational Phase II Trial of Cediranib Plus Olaparib for Ovarian Cancer after PARP Inhibition Progression. Clin Cancer Res 2020; 26: 4206-4215
- 66 Winkler C, Armenia J, Jones GN. et al. SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. Br J Cancer 2021; 124: 951-962
- 67 Pujade-Lauraine E, Selle F, Scambia G. et al. Maintenance olaparib rechallenge in patients with platinum-sensitive relapsed ovarian cancer previously treated with a PARP inhibitor (OReO/ENGOT-ov38): a phase IIIb trial. Ann Oncol 2023; 34: 1152-1164
- 68 Bhamidipati D, Haro-Silerio JI, Yap TA. et al. PARP inhibitors: enhancing efficacy through rational combinations. Br J Cancer 2023; 129: 904-916
- 69 Yang D, Huang FX, Wei W. et al. Loss of HRD functional phenotype impedes immunotherapy and can be reversed by HDAC inhibitor in ovarian cancer. Int J Biol Sci 2023; 19: 1846-1860
- 70 Disis ML, Taylor MH, Kelly K. et al. Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial. JAMA Oncol 2019; 5: 393-401
- 71 Matulonis UA, Shapira-Frommer R, Santin AD. et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol 2019; 30: 1080-1087
- 72 Farkkila A, Gulhan DC, Casado J. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun 2020; 11: 1459
- 73 Nelson BH, Hamilton P, Phung MT. et al. Immunological and molecular features of the tumor microenvironment of long-term survivors of ovarian cancer. J Clin Invest 2024; 134
- 74 Zhang AW, McPherson A, Milne K. et al. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer. Cell 2018; 173: 1755-1769.e22
- 75 Sato E, Olson SH, Ahn J. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 2005; 102: 18538-18543
- 76 Waldron L, Haibe-Kains B, Culhane AC. et al. Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J Natl Cancer Inst 2014; 106: dju049
- 77 Chen GM, Kannan L, Geistlinger L. et al. Consensus on Molecular Subtypes of High-Grade Serous Ovarian Carcinoma. Clin Cancer Res 2018; 24: 5037-5047
- 78 Verhaak RG, Tamayo P, Yang JY. et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 2013; 123: 517-525
- 79 Scheper W, Kelderman S, Fanchi LF. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med 2019; 25: 89-94
- 80 Yeh CY, Aguirre K, Laveroni O. et al. Mapping spatial organization and genetic cell-state regulators to target immune evasion in ovarian cancer. Nat Immunol 2024; 25: 1943-1958
- 81 Yang B, Li X, Zhang W. et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med 2022; 3: 100856
- 82 Vazquez-Garcia I, Uhlitz F, Ceglia N. et al. Ovarian cancer mutational processes drive site-specific immune evasion. Nature 2022; 612: 778-786
- 83 Curiel TJ, Coukos G, Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942-949
- 84 Mateiou C, Lokhande L, Diep LH. et al. Spatial tumor immune microenvironment phenotypes in ovarian cancer. NPJ Precis Oncol 2024; 8: 148
- 85 Izar B, Tirosh I, Stover EH. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat Med 2020; 26: 1271-1279
- 86 Song M, Sandoval TA, Chae CS. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 2018; 562: 423-428
- 87 Kilgour MK, MacPherson S, Zacharias LG. et al. 1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. Sci Adv 2021; 7: eabe1174
- 88 Singel KL, Emmons TR, Khan ANH. et al. Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight 2019; 4: e122311
- 89 Roumenina LT, Daugan MV, Petitprez F. et al. Context-dependent roles of complement in cancer. Nat Rev Cancer 2019; 19: 698-715
- 90 Olalekan S, Xie B, Back R. et al. Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep 2021; 35: 109165
- 91 Anadon CM, Yu X, Hanggi K. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 2022; 40: 545-557.e13
- 92 Webb JR, Milne K, Watson P. et al. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 2014; 20: 434-444
- 93 Paijens ST, Vledder A, Loiero D. et al. Prognostic image-based quantification of CD8CD103 T cell subsets in high-grade serous ovarian cancer patients. Oncoimmunology 2021; 10: 1935104
- 94 Kroeger DR, Milne K, Nelson BH. Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures, Cytolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clin Cancer Res 2016; 22: 3005-3015
- 95 Kasikova L, Rakova J, Hensler M. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat Commun 2024; 15: 2528
- 96 Xu AM, Haro M, Walts AE. et al. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma. Sci Adv 2024; 10: eadk8805
- 97 Olbrecht S, Busschaert P, Qian J. et al. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification. Genome Med 2021; 13: 111
- 98 Ukita M, Hamanishi J, Yoshitomi H. et al. CXCL13-producing CD4+ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. JCI Insight 2022; 7: e157215
- 99 Schwede M, Waldron L, Mok SC. et al. The Impact of Stroma Admixture on Molecular Subtypes and Prognostic Gene Signatures in Serous Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29: 509-519
- 100 Zhang Q, Wang C, Cliby WA. Cancer-associated stroma significantly contributes to the mesenchymal subtype signature of serous ovarian cancer. Gynecol Oncol 2019; 152: 368-374
- 101 Desbois M, Udyavar AR, Ryner L. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat Commun 2020; 11: 5583
- 102 Stur E, Corvigno S, Xu M. et al. Spatially resolved transcriptomics of high-grade serous ovarian carcinoma. iScience 2022; 25: 103923
- 103 Zhang L, Cascio S, Mellors JW. et al. Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol 2024; 7: 20
- 104 Yang D, Duan MH, Yuan QE. et al. Suppressive stroma-immune prognostic signature impedes immunotherapy in ovarian cancer and can be reversed by PDGFRB inhibitors. J Transl Med 2023; 21: 586
- 105 Li Y, Tian R, Liu J. et al. Deciphering the immune landscape dominated by cancer-associated fibroblasts to investigate their potential in indicating prognosis and guiding therapeutic regimens in high grade serous ovarian carcinoma. Front Immunol 2022; 13: 940801
- 106 Yang H, Gu X, Fan R. et al. Deciphering tumor immune microenvironment differences between high-grade serous and endometrioid ovarian cancer to investigate their potential in indicating immunotherapy response. J Ovarian Res 2023; 16: 223
- 107 Geistlinger L, Oh S, Ramos M. et al. Multiomic Analysis of Subtype Evolution and Heterogeneity in High-Grade Serous Ovarian Carcinoma. Cancer Res 2020; 80: 4335-4345
- 108 Sveen A, Johannessen B, Klokkerud SM. et al. Evolutionary mode and timing of dissemination of high-grade serous carcinomas. JCI Insight 2024; 9: e170423
- 109 Denisenko E, de Kock L, Tan A. et al. Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones. Nat Commun 2024; 15: 2860
- 110 Schwarz RF, Ng CK, Cooke SL. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 2015; 12: e1001789
- 111 Bielski CM, Zehir A, Penson AV. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet 2018; 50: 1189-1195
- 112 Cheng Z, Mirza H, Ennis DP. et al. The Genomic Landscape of Early-Stage Ovarian High-Grade Serous Carcinoma. Clin Cancer Res 2022; 28: 2911-2922
- 113 McPherson A, Vazquez-Garcia I, Myers MA. et al. Ongoing genome doubling promotes evolvability and immune dysregulation in ovarian cancer. bioRxiv 2024;
- 114 Burdett NL, Willis MO, Pandey A. et al. Timing of whole genome duplication is associated with tumor-specific MHC-II depletion in serous ovarian cancer. Nat Commun 2024; 15: 6069
- 115 Perez-Villatoro F, van Wagensveld L, Shabanova A. et al. Single-cell spatial atlas of high-grade serous ovarian cancer unveils MHC class II as a key driver of spatial tumor ecosystems and clinical outcomes. bioRxiv 2024;
- 116 Wang XQ, Danenberg E, Huang CS. et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 2023; 621: 868-876
- 117 Johnson DB, Estrada MV, Salgado R. et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 2016; 7: 10582
- 118 Turner TB, Meza-Perez S, Londono A. et al. Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget 2017; 8: 44159-44170
- 119 Alexandrov LB, Nik-Zainal S, Wedge DC. et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415-421
- 120 Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science 2015; 349: 1483-1489
- 121 Tian W, Shan B, Zhang Y. et al. Association between DNA damage repair gene somatic mutations and immune-related gene expression in ovarian cancer. Cancer Med 2020; 9: 2190-2200
- 122 Cristescu R, Aurora-Garg D, Albright A. et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: a pan-tumor retrospective analysis of participants with advanced solid tumors. J Immunother Cancer 2022; 10: e003091
- 123 Marcus L, Fashoyin-Aje LA, Donoghue M. et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin Cancer Res 2021; 27: 4685-4689
- 124 Strickland KC, Howitt BE, Shukla SA. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016; 7: 13587-13598
- 125 Park J, Kim JC, Lee YJ. et al. Unique immune characteristics and differential anti-PD-1-mediated reinvigoration potential of CD8(+) TILs based on BRCA1/2 mutation status in epithelial ovarian cancers. J Immunother Cancer 2024; 12: e009058
- 126 Launonen IM, Lyytikainen N, Casado J. et al. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nat Commun 2022; 13: 835
- 127 Przybytkowski E, Davis T, Hosny A. et al. An immune-centric exploration of BRCA1 and BRCA2 germline mutation related breast and ovarian cancers. BMC Cancer 2020; 20: 197
- 128 Chen M, Linstra R, van Vugt M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877: 188661
- 129 Kwon J, Bakhoum SF. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discov 2020; 10: 26-39
- 130 Bruand M, Barras D, Mina M. et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep 2021; 36: 109412
- 131 Samstein RM, Krishna C, Ma X. et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat Cancer 2021; 1: 1188-1203
- 132 van Wagensveld L, van Baal J, Timmermans M. et al. Homologous Recombination Deficiency and Cyclin E1 Amplification Are Correlated with Immune Cell Infiltration and Survival in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14: 5965
- 133 Kment J, Newsted D, Young S. et al. Blockade of TGF-beta and PD-L1 by bintrafusp alfa promotes survival in preclinical ovarian cancer models by promoting T effector and NK cell responses. Br J Cancer 2024; 130: 2003-2015
- 134 Rocconi RP, Grosen EA, Ghamande SA. et al. Gemogenovatucel-T (Vigil) immunotherapy as maintenance in frontline stage III/IV ovarian cancer (VITAL): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Oncol 2020; 21: 1661-1672
- 135 Keunecke C, Kulbe H, Dreher F. et al. Predictive biomarker for surgical outcome in patients with advanced primary high-grade serous ovarian cancer. Are we there yet? An analysis of the prospective biobank for ovarian cancer. Gynecol Oncol 2022; 166: 334-343
- 136 Fotopoulou C, Rockall A, Lu H. et al. Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer (HGSOC). Br J Cancer 2022; 126: 1047-1054
- 137 Auer K, Bachmayr-Heyda A, Aust S. et al. Peritoneal tumor spread in serous ovarian cancer-epithelial mesenchymal status and outcome. Oncotarget 2015; 6: 17261-17275
- 138 Auer K, Bachmayr-Heyda A, Sukhbaatar N. et al. Role of the immune system in the peritoneal tumor spread of high grade serous ovarian cancer. Oncotarget 2016; 7: 61336-61354
- 139 Napoletano C, Bellati F, Landi R. et al. Ovarian cancer cytoreduction induces changes in T cell population subsets reducing immunosuppression. J Cell Mol Med 2010; 14: 2748-2759
- 140 Nowak M, Glowacka E, Lewkowicz P. et al. Sub-optimal primary surgery leads to unfavorable immunological changes in ovarian cancer patients. Immunobiology 2018; 223: 1-7
- 141 Torkildsen CF, Austdal M, Jarmund AH. et al. New immune phenotypes for treatment response in high-grade serous ovarian carcinoma patients. Front Immunol 2024; 15: 1394497
- 142 Wouters MC, Komdeur FL, Workel HH. et al. Treatment Regimen, Surgical Outcome, and T-cell Differentiation Influence Prognostic Benefit of Tumor-Infiltrating Lymphocytes in High-Grade Serous Ovarian Cancer. Clin Cancer Res 2016; 22: 714-724
- 143 Bohm S, Montfort A, Pearce OM. et al. Neoadjuvant Chemotherapy Modulates the Immune Microenvironment in Metastases of Tubo-Ovarian High-Grade Serous Carcinoma. Clin Cancer Res 2016; 22: 3025-3036
- 144 Peng J, Hamanishi J, Matsumura N. et al. Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-kappaB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer. Cancer Res 2015; 75: 5034-5045
- 145 Launonen IM, Erkan EP, Niemiec I. et al. Chemotherapy induces myeloid-driven spatial T-cell exhaustion in ovarian cancer. bioRxiv 2024;
- 146 Jimenez-Sanchez A, Cybulska P, Mager KL. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat Genet 2020; 52: 582-593
- 147 Montfort A, Pearce O, Maniati E. et al. A Strong B-cell Response Is Part of the Immune Landscape in Human High-Grade Serous Ovarian Metastases. Clin Cancer Res 2017; 23: 250-262
- 148 Lodewijk I, Bernardini A, Suarez-Cabrera C. et al. Genomic landscape and immune-related gene expression profiling of epithelial ovarian cancer after neoadjuvant chemotherapy. NPJ Precis Oncol 2022; 6: 7
- 149 Mesnage SJL, Auguste A, Genestie C. et al. Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann Oncol 2017; 28: 651-657
- 150 Vanguri R, Benhamida J, Young JH. et al. Understanding the impact of chemotherapy on the immune landscape of high-grade serous ovarian cancer. Gynecol Oncol Rep 2022; 39: 100926
- 151 Monk BJ, Colombo N, Oza AM. et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol 2021; 22: 1275-1289
- 152 Ray-Coquard IL, Savoye AM, Schiffler C. et al. Neoadjuvant and adjuvant pembrolizumab in advanced high-grade serous carcinoma: the randomized phase II NeoPembrOV clinical trial. Nat Commun 2024; 15: 5931
- 153 Le Saux O, Ardin M, Berthet J. et al. Immunomic longitudinal profiling of the NeoPembrOv trial identifies drivers of immunoresistance in high-grade ovarian carcinoma. Nat Commun 2024; 15: 5932
- 154 Ding L, Kim HJ, Wang Q. et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep 2018; 25: 2972-2980.e5
- 155 Ding L, Wang Q, Martincuks A. et al. STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer. J Immunother Cancer 2023; 11: e005627
- 156 Martincuks A, Song J, Kohut A. et al. PARP Inhibition Activates STAT3 in Both Tumor and Immune Cells Underlying Therapy Resistance and Immunosuppression In Ovarian Cancer. Front Oncol 2021; 11: 724104
- 157 Wang Z, Sun K, Xiao Y. et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep 2019; 9: 1853
- 158 Shen J, Zhao W, Ju Z. et al. PARPi Triggers the STING-Dependent Immune Response and Enhances the Therapeutic Efficacy of Immune Checkpoint Blockade Independent of BRCAness. Cancer Res 2019; 79: 311-319
- 159 Konstantinopoulos PA, Waggoner S, Vidal GA. et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma. JAMA Oncol 2019; 5: 1141-1149
- 160 Domchek SM, Postel-Vinay S, Im SA. et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol 2020; 21: 1155-1164
- 161 Gonzalez Martin A, Sanchez Lorenzo L, Colombo N. et al. A phase III, randomized, double blinded trial of platinum based chemotherapy with or without atezolizumab followed by niraparib maintenance with or without atezolizumab in patients with recurrent ovarian, tubal, or peritoneal cancer and platinum treatment free interval of more than 6 months: ENGOT-Ov41/GEICO 69-O/ANITA Trial. Int J Gynecol Cancer 2021; 31: 617-622
- 162 Monk BJ, Minion LE, Coleman RL. Anti-angiogenic agents in ovarian cancer: past, present, and future. Ann Oncol 2016; 27 (Suppl. 1) i33-i39
- 163 Garcia-Martinez E, Redondo A, Piulats JM. et al. Are antiangiogenics a good ‘partner’ for immunotherapy in ovarian cancer?. Angiogenesis 2020; 23: 543-557
- 164 Bouzin C, Brouet A, De Vriese J. et al. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 2007; 178: 1505-1511
- 165 Tavira B, Iscar T, Manso L. et al. Analysis of Tumor Microenvironment Changes after Neoadjuvant Chemotherapy with or without Bevacizumab in Advanced Ovarian Cancer (GEICO-89T/MINOVA Study). Clin Cancer Res 2024; 30: 176-186
- 166 Spigel DR, Cheng Y, Cho BC. et al. ADRIATIC: Durvalumab (D) as consolidation treatment (tx) for patients (pts) with limited-stage small-cell lung cancer (LS-SCLC). J Clin Oncol 2024; 42 (Suppl. 17)
- 167 Kurtz JE, Pujade-Lauraine E, Oaknin A. et al. Atezolizumab Combined With Bevacizumab and Platinum-Based Therapy for Platinum-Sensitive Ovarian Cancer: Placebo-Controlled Randomized Phase III ATALANTE/ENGOT-ov29 Trial. J Clin Oncol 2023; 41: 4768-4778
- 168 Liu YL, Selenica P, Zhou Q. et al. BRCA Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precis Oncol 2020; 4: PO.20.00069
- 169 Landen CN, Molinero L, Hamidi H. et al. Influence of Genomic Landscape on Cancer Immunotherapy for Newly Diagnosed Ovarian Cancer: Biomarker Analyses from the IMagyn050 Randomized Clinical Trial. Clin Cancer Res 2023; 29: 1698-1707
- 170 Stover EH, Fuh K, Konstantinopoulos PA. et al. Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol Oncol 2020; 159: 887-898
- 171 Patel JN, Braicu I, Timms KM. et al. Characterisation of homologous recombination deficiency in paired primary and recurrent high-grade serous ovarian cancer. Br J Cancer 2018; 119: 1060-1066
- 172 Takaya H, Nakai H, Sakai K. et al. Intratumor heterogeneity and homologous recombination deficiency of high-grade serous ovarian cancer are associated with prognosis and molecular subtype and change in treatment course. Gynecol Oncol 2020; 156: 415-422
- 173 Takaya H, Nakai H, Takamatsu S. et al. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep 2020; 10: 2757
- 174 Duraiswamy J, Turrini R, Minasyan A. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 2021; 39: 1623-1642 e1620
- 175 Ledermann JA, Shapira-Frommer R, Santin AD. et al. Molecular determinants of clinical outcomes of pembrolizumab in recurrent ovarian cancer: Exploratory analysis of KEYNOTE-100. Gynecol Oncol 2023; 178: 119-129
- 176 Haas AR, Tanyi JL, O’Hara MH. et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol Ther 2019; 27: 1919-1929
- 177 Chen J, Hu J, Gu L. et al. Anti-mesothelin CAR-T immunotherapy in patients with ovarian cancer. Cancer Immunol Immunother 2023; 72: 409-425
- 178 Crawford A, Haber L, Kelly MP. et al. A Mucin 16 bispecific T cell-engaging antibody for the treatment of ovarian cancer. Sci Transl Med 2019; 11: eaau7534
- 179 Li T, Wang J. Therapeutic effect of dual CAR-T targeting PDL1 and MUC16 antigens on ovarian cancer cells in mice. BMC Cancer 2020; 20: 678
- 180 Shalaby N, Xia Y, Kelly JJ. et al. Imaging CAR-NK cells targeted to HER2 ovarian cancer with human sodium-iodide symporter-based positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51: 3176-3190
- 181 Tubridy EA, Eiva MA, Liu F. et al. CD137+ tumor infiltrating lymphocytes predicts ovarian cancer survival. Gynecol Oncol 2024; 184: 74-82
- 182 Tassi E, Bergamini A, Wignall J. et al. Epithelial ovarian cancer is infiltrated by activated effector T cells co-expressing CD39, PD-1, TIM-3, CD137 and interacting with cancer cells and myeloid cells. Front Immunol 2023; 14: 1212444
- 183 Amaria R, Knisely A, Vining D. et al. Efficacy and safety of autologous tumor-infiltrating lymphocytes in recurrent or refractory ovarian cancer, colorectal cancer, and pancreatic ductal adenocarcinoma. J Immunother Cancer 2024; 12: e006822
- 184 Emmanuelli A, Salvagno C, Hwang SM. et al. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1alpha activity in neutrophils. Oncoimmunology 2024; 13: 2411070
- 185 Kalaitsidou M, Moon OR, Sykorova M. et al. Signaling via a CD28/CD40 chimeric costimulatory antigen receptor (CoStAR), targeting folate receptor alpha, enhances T cell activity and augments tumor reactivity of tumor infiltrating lymphocytes. Front Immunol 2023; 14: 1256491
- 186 Quixabeira DCA, Jirovec E, Pakola S. et al. Improving the cytotoxic response of tumor-infiltrating lymphocytes towards advanced stage ovarian cancer with an oncolytic adenovirus expressing a human vIL-2 cytokine. Cancer Gene Ther 2023; 30: 1543-1553
- 187 Capellero S, Erriquez J, Melano C. et al. Preclinical immunotherapy with Cytokine-Induced Killer lymphocytes against epithelial ovarian cancer. Sci Rep 2020; 10: 6478
- 188 Banville AC, Wouters MCA, Oberg AL. et al. Co-expression patterns of chimeric antigen receptor (CAR)-T cell target antigens in primary and recurrent ovarian cancer. Gynecol Oncol 2021; 160: 520-529
- 189 Hwang SM, Awasthi D, Jeong J. et al. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 2024; 635: 1010-1018