Subscribe to RSS
DOI: 10.1055/a-2617-9786
The Role of Platelet microRNAs in Cancer
Funding This work was supported by grant B23-RSF162 and Russian Science Foundation grant 23-45-10039.

Abstract
There is strong evidence that platelets significantly contribute to cancer progression. Numerous studies have shown that microRNAs in platelet microvesicles play an important role in different stages of cancer and can serve as new diagnostic and prognostic biomarkers. Since platelet microRNAs have opposing purposes, it is challenging to make clear-cut judgements regarding their involvement in carcinogenesis. However, it is well known that the processes regulated by microRNAs in cancer include cell proliferation, cell death, epithelial–mesenchymal transition, cancer metastasis, and angiogenesis. This review focusses on and summarizes current research in the field of platelet–cancer interactions and discusses the role of platelet microRNAs in cancer development, which is a promising area for future research and therapeutic development.
Author Contributions
Dremuk I.A.: conceptualization, draft preparation, writing, review, and editing.
Shamova E.V.: conceptualization, writing, review, editing, and supervision.
Sveshnikova A.N.: writing, review, editing, and supervision.
Ethics Statement
Ethical approval was not required.
Declaration of Competing Interests
There are no competing interests to disclose.
Data Availability Statement
Not applicable as no new unpublished data were generated for this review.
Publication History
Received: 16 May 2025
Accepted: 21 May 2025
Article published online:
14 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Chaudhary PK, Kim S, Kim S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. Life (Basel) 2023; 13 (06) 1403
- 2 Contursi A, Tacconelli S, Di Berardino S, De Michele A, Patrignani P. Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention. Front Pharmacol 2024; 15: 1520488
- 3 Wojtukiewicz MZ, Sierko E, Hempel D, Tucker SC, Honn KV. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev 2017; 36 (02) 249-262
- 4 Tian Y, Zong Y, Pang Y. et al. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10 (01) 159
- 5 Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM. et al. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13 (01) 27
- 6 Abdol Razak NB, Jones G, Bhandari M, Berndt MC, Metharom P. Cancer-associated thrombosis: an overview of mechanisms, risk factors, and treatment. Cancers (Basel) 2018; 10 (10) 380
- 7 Liao K, Zhang X, Liu J. et al. The role of platelets in the regulation of tumor growth and metastasis: the mechanisms and targeted therapy. MedComm 2023; 4 (05) e350
- 8 Chen L, Zhu C, Pan F. et al. Platelets in the tumor microenvironment and their biological effects on cancer hallmarks. Front Oncol 2023; 13: 1121401
- 9 De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 2017; 17 (08) 457-474
- 10 Lazar S, Goldfinger LE. Platelets and extracellular vesicles and their cross talk with cancer. Blood 2021; 137 (23) 3192-3200
- 11 Czajka P, Fitas A, Jakubik D. et al. MicroRNA as potential biomarkers of platelet function on antiplatelet therapy: a review. Front Physiol 2021; 12: 652579
- 12 Miao S, Zhang Q, Chang W, Wang J. New insights into platelet-enriched miRNAs: production, functions, roles in tumors, and potential targets for tumor diagnosis and treatment. Mol Cancer Ther 2021; 20 (08) 1359-1366
- 13 Weber JA, Baxter DH, Zhang S. et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56 (11) 1733-1741
- 14 Mussbacher M, Pirabe A, Brunnthaler L, Schrottmaier WC, Assinger A. Horizontal microRNA transfer by platelets—evidence and implications. Front Physiol 2021; 12: 678362
- 15 Yadav P, Beura SK, Panigrahi AR, Bhardwaj T, Giri R, Singh SK. Platelet-derived microvesicles activate human platelets via intracellular calcium mediated reactive oxygen species release. Blood Cells Mol Dis 2023; 98: 102701
- 16 Catani MV, Savini I, Tullio V, Gasperi V. The “Janus face” of platelets in cancer. Int J Mol Sci 2020; 21 (03) 788
- 17 Chen Z, Ma T, Huang C, Hu T, Li J. The pivotal role of microRNA-155 in the control of cancer. J Cell Physiol 2014; 229 (05) 545-550
- 18 Sveshnikova AN, Tesakov IP, Kuznetsova SA, Shamova EM. Role of platelet activation in the development and metastasis of solid tumors. J Evol Biochem Physiol 2024; 60 (01) 211-227
- 19 Barbagallo D, Ponti D, Bassani B. et al. MiR-223-3p in cancer development and cancer drug resistance: same coin, different faces. Int J Mol Sci 2024; 25 (15) 8191
- 20 Inoguchi S, Seki N, Chiyomaru T. et al. Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett 2014; 588 (17) 3170-3179
- 21 Garcia A, Dunoyer-Geindre S, Fontana P. Do miRNAs have a role in platelet function regulation?. Hamostaseologie 2021; 41 (03) 217-224
- 22 Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P. miRNAs in cancer (review of literature). Int J Mol Sci 2022; 23 (05) 2805
- 23 Pekarek L, Torres-Carranza D, Fraile-Martinez O. et al. An overview of the role of microRNAs on carcinogenesis: a focus on cell cycle, angiogenesis and metastasis. Int J Mol Sci 2023; 24 (08) 7268
- 24 Wu HH, Leng S, Sergi C, Leng R. How microRNAs command the battle against cancer. Int J Mol Sci 2024; 25 (11) 5865
- 25 Jang JH, Lee T-J. The role of microRNAs in cell death pathways. Yeungnam Univ J Med 2021; 38 (02) 107-117
- 26 Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004
- 27 Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev 2012; 31 (3-4): 653-662
- 28 Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19 (01) 92-105
- 29 Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny J-L, Fontana P. Methods to investigate miRNA function: focus on platelet reactivity. Thromb Haemost 2021; 121 (04) 409-421
- 30 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
- 31 Kannan M, Mohan KVK, Kulkarni S, Atreya C. Membrane array-based differential profiling of platelets during storage for 52 miRNAs associated with apoptosis. Transfusion 2009; 49 (07) 1443-1450
- 32 Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16 (09) 961-966
- 33 Osman A, Fälker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 2011; 22 (06) 433-441
- 34 Plé H, Landry P, Benham A, Coarfa C, Gunaratne PH, Provost P. The repertoire and features of human platelet microRNAs. PLoS One 2012; 7 (12) e50746
- 35 Bray PF, McKenzie SE, Edelstein LC. et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 2013; 14: 1
- 36 Krammer TL, Mayr M, Hackl M. microRNAs as promising biomarkers of platelet activity in antiplatelet therapy monitoring. Int J Mol Sci 2020; 21 (10) 3477
- 37 Leblanc R, Houssin A, Peyruchaud O. Platelets, autotaxin and lysophosphatidic acid signalling: win-win factors for cancer metastasis. Br J Pharmacol 2018; 175 (15) 3100-3110
- 38 Rowley JW, Chappaz S, Corduan A. et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016; 127 (14) 1743-1751
- 39 Edelstein LC, Bray PF. MicroRNAs in platelet production and activation. Blood 2011; 117 (20) 5289-5296
- 40 Chen X, Ba Y, Ma L. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10) 997-1006
- 41 Laffont B, Corduan A, Plé H. et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 2013; 122 (02) 253-261
- 42 Li L, Zhu D, Huang L. et al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One 2012; 7 (10) e46957
- 43 Pan Y, Liang H, Liu H. et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 2014; 192 (01) 437-446
- 44 Jeppesen DK, Fenix AM, Franklin JL. et al. Reassessment of exosome composition. Cell 2019; 177 (02) 428-445.e18
- 45 Masoudikabir P, Shirazy M, Taghizadeh FS, Gheydari ME, Hamidpour M. Platelet-enriched microRNAs as novel biomarkers in atherosclerotic and cardiovascular disease patients. ARYA Atheroscler 2024; 20 (04) 47-67
- 46 Guo J, Cui B, Zheng J. et al. Platelet-derived microparticles and their cargos: the past, present and future. Asian J Pharm Sci 2024; 19 (02) 100907
- 47 Xin X, Koenen RR. Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases. Expert Opin Ther Targets 2025; 29 (1-2): 17-28
- 48 Michael JV, Wurtzel JGT, Mao GF. et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 2017; 130 (05) 567-580
- 49 Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13 (03) 269-288
- 50 Aatonen M, Grönholm M, Siljander PR. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost 2012; 38 (01) 102-113
- 51 Eustes AS, Dayal S. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis. Int J Mol Sci 2022; 23 (14) 7837
- 52 Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Beyond blood clotting: the many roles of platelet-derived extracellular vesicles. Biomedicines 2024; 12 (08) 1850
- 53 Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda) 2017; 32 (02) 162-177
- 54 Fujii T, Sakata A, Nishimura S, Eto K, Nagata S. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc Natl Acad Sci U S A 2015; 112 (41) 12800-12805
- 55 Cauwenberghs S, Feijge MAH, Harper AGS, Sage SO, Curvers J, Heemskerk JWM. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett 2006; 580 (22) 5313-5320
- 56 Lazar S, Goldfinger LE. Platelet microparticles and miRNA transfer in cancer progression: many targets, modes of action, and effects across cancer stages. Front Cardiovasc Med 2018; 5: 13
- 57 El-Daly SM, Gouhar SA, Abd Elmageed ZY. Circulating microRNAs as reliable tumor biomarkers: opportunities and challenges facing clinical application. J Pharmacol Exp Ther 2023; 384 (01) 35-51
- 58 Dong X, Chang M, Song X, Ding S, Xie L, Song X. Plasma miR-1247-5p, miR-301b-3p and miR-105-5p as potential biomarkers for early diagnosis of non-small cell lung cancer. Thorac Cancer 2021; 12 (04) 539-548
- 59 Arab A, Karimipoor M, Irani S. et al. Potential circulating miRNA signature for early detection of NSCLC. Cancer Genet 2017; 216-217: 150-158
- 60 Shi W, Wartmann T, Accuffi S. et al. Integrating a microRNA signature as a liquid biopsy-based tool for the early diagnosis and prediction of potential therapeutic targets in pancreatic cancer. Br J Cancer 2024; 130 (01) 125-134
- 61 Qasemi Rad M, Pouresmaeil V, Hosseini Mojahed F, Amirabadi A, Aalami AH. Clinicopathological utility of miR-203a-3p in diagnosing colorectal cancer. Mol Biol Rep 2022; 49 (07) 6975-6985
- 62 Turkoglu F, Calisir A, Ozturk B. Clinical importance of serum miRNA levels in breast cancer patients. Discov Oncol 2024; 15 (01) 19
- 63 Zografos E, Zagouri F, Kalapanida D. et al. Prognostic role of microRNAs in breast cancer: a systematic review. Oncotarget 2019; 10 (67) 7156-7178
- 64 Gao Y, Liu Y, Du L. et al. Down-regulation of miR-24-3p in colorectal cancer is associated with malignant behavior. Med Oncol 2015; 32 (01) 362
- 65 Zhu H, Wu H, Liu X. et al. Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008; 76 (05) 582-588
- 66 Tavares V, Neto BV, Marques IS, Assis J, Pereira D, Medeiros R. Cancer-associated thrombosis: what about microRNAs targeting the tissue factor coagulation pathway?. Biochim Biophys Acta Rev Cancer 2024; 1879 (01) 189053
- 67 Provost P. The clinical significance of platelet microparticle-associated microRNAs. Clin Chem Lab Med 2017; 55 (05) 657-666
- 68 Liang H, Yan X, Pan Y. et al. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol Cancer 2015; 14: 58
- 69 Zhou L, Zhang Z, Tian Y, Li Z, Liu Z, Zhu S. The critical role of platelet in cancer progression and metastasis. Eur J Med Res 2023; 28 (01) 385
- 70 Tang M, Jiang L, Lin Y. et al. Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget 2017; 8 (57) 97464-97475
- 71 Wang H, Wei X, Wu B, Su J, Tan W, Yang K. Tumor-educated platelet miR-34c-3p and miR-18a-5p as potential liquid biopsy biomarkers for nasopharyngeal carcinoma diagnosis. Cancer Manag Res 2019; 11: 3351-3360
- 72 Bian X, Yin S, Yang S. et al. Roles of platelets in tumor invasion and metastasis: A review. Heliyon 2022; 8 (12) e12072
- 73 Sibilano M, Tullio V, Adorno G, Savini I, Gasperi V, Catani MV. Platelet-derived miR-126-3p directly targets AKT2 and exerts anti-tumor effects in breast cancer cells: further insights in platelet-cancer interplay. Int J Mol Sci 2022; 23 (10) 5484
- 74 Dudiki T, Veleeparambil M, Zhevlakova I. et al. Mechanism of tumor-platelet communications in cancer. Circ Res 2023; 132 (11) 1447-1461
- 75 Kovalenko TA, Panteleev MA, Sveshnikova AN. The role of tissue factor in metastasising, neoangiogenesis and hemostasis in cancer. Oncohematology. 2019; 14: 70-85
- 76 Cortez MA, Nicoloso MS, Shimizu M. et al. miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer 2010; 49 (11) 981-990
- 77 Sun Q, Zhang J, Cao W. et al. Dysregulated miR-363 affects head and neck cancer invasion and metastasis by targeting podoplanin. Int J Biochem Cell Biol 2013; 45 (03) 513-520
- 78 Ali HO, Arroyo AB, González-Conejero R. et al. The role of microRNA-27a/b and microRNA-494 in estrogen-mediated downregulation of tissue factor pathway inhibitor α. J Thromb Haemost 2016; 14 (06) 1226-1237
- 79 Xu N, Liu B, Lian C. et al. Long noncoding RNA AC003092.1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma. Cell Death Dis 2018; 9 (12) 1139
- 80 Collier MEW, Ambrose AR, Goodall AH. Does hsa-miR-223-3p from platelet-derived extracellular vesicles regulate tissue factor expression in monocytic cells?. Platelets 2022; 33 (07) 1031-1042
- 81 Tavares V, Savva-Bordalo J, Rei M. et al. Plasma microRNA environment linked to tissue factor pathway and cancer-associated thrombosis: prognostic significance in ovarian cancer. Biomolecules 2024; 14 (08) 928
- 82 Wang X, Sundquist K, Svensson PJ. et al. Association of recurrent venous thromboembolism and circulating microRNAs. Clin Epigenetics 2019; 11 (01) 28
- 83 Liu T, Kang J, Liu F. Plasma levels of microRNA-221 (miR-221) are increased in patients with acute pulmonary embolism. Med Sci Monit 2018; 24: 8621-8626
- 84 Rossetti P, Goldoni M, Pengo V. et al. MiRNA 126 as a new predictor biomarker in venous thromboembolism of persistent residual vein obstruction: a review of the literature plus a pilot study. Semin Thromb Hemost 2021; 47 (08) 982-991
- 85 Liu L, Yuan L, Huang D. et al. miR-126 regulates the progression of epithelial ovarian cancer in vitro and in vivo by targeting VEGF-A. Int J Oncol 2020; 57 (03) 825-834
- 86 Li Y, Yan C, Fan J, Hou Z, Han Y. MiR-221-3p targets Hif-1α to inhibit angiogenesis in heart failure. Lab Invest 2021; 101 (01) 104-115
- 87 Zhang L-J, Hu Y-X, Huang R-Z. et al. Intraplatelet miRNA-126 regulates thrombosis and its reduction contributes to platelet inhibition. Cardiovasc Res 2024; 120 (13) 1622-1635
- 88 Oto J, Plana E, Solmoirago MJ. et al. MicroRNAs and markers of neutrophil activation as predictors of early incidental post-surgical pulmonary embolism in patients with intracranial tumors. Cancers (Basel) 2020; 12 (06) 1536
- 89 D'Ambrosi S, Nilsson RJ, Wurdinger T. Platelets and tumor-associated RNA transfer. Blood 2021; 137 (23) 3181-3191
- 90 Raskov H, Orhan A, Agerbæk MØ, Gögenur I. The impact of platelets on the metastatic potential of tumour cells. Heliyon 2024; 10 (14) e34361
- 91 Liu F, Wang X, Li J. et al. miR-34c-3p functions as a tumour suppressor by inhibiting eIF4E expression in non-small cell lung cancer. Cell Prolif 2015; 48 (05) 582-592
- 92 Lucotti S. Interplay between cancer, platelets, and megakaryocytes during metastasis. In: Rezaei N. ed. Handbook of Cancer and Immunology [Internet]. Cham: Springer International Publishing; 2022: 1-28 . Accessed at: https://link.springer.com/10.1007/978-3-030-80962-1_65-1
- 93 Ryu T, Nishimura S, Miura H. et al. Thrombopoietin-producing hepatocellular carcinoma. Intern Med 2003; 42 (08) 730-734
- 94 Stone RL, Nick AM, McNeish IA. et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 2012; 366 (07) 610-618
- 95 Kaser A, Brandacher G, Steurer W. et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 2001; 98 (09) 2720-2725
- 96 Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med 2020; 72: 100825
- 97 Witwer KW, Halushka MK. Toward the promise of microRNAs—enhancing reproducibility and rigor in microRNA research. RNA Biol 2016; 13 (11) 1103-1116
- 98 Ameling S, Kacprowski T, Chilukoti RK. et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med Genomics 2015; 8: 61
- 99 Flowers E, Won GY, Fukuoka Y. MicroRNAs associated with exercise and diet: a systematic review. Physiol Genomics 2015; 47 (01) 1-11
- 100 Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18 (03) 371-390
- 101 Guo H.. et al. Nature 2010; 466 (7308): 835-840