Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00025710.xml
Sportphysio 2025; 13(04): 190-202
DOI: 10.1055/a-2625-2131
DOI: 10.1055/a-2625-2131
Focus
Mitochondrien: Funktion, Anpassungen und Trainingsstrategien

Mitochondrien sind weit mehr als „Kraftwerke der Zelle“. Neben der Energieproduktion steuern sie zentrale Prozesse wie Zellregeneration und Entzündungsregulation und spielen eine Schlüsselrolle in der Prävention chronischer Erkrankungen. Für Physiotherapeut*innen eröffnet sich damit ein spannendes Handlungsfeld, in dem sich durch gezielte Trainingsreize die mitochondrialen Funktionen gezielt verbessern lassen.
Publication History
Article published online:
12 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Anagnostou ME, Hepple RT. Mitochondrial mechanisms of neuromuscular junction degeneration with aging. Cells 2020 9. 1
- 2 Burtscher J, Mallet RT, Pialoux V. et al. Adaptive responses to hypoxia and/or hyperoxia in humans. Antioxid Redox Signal 2022; 37 (13/15) 887-912
- 3 Chatzinikita E, Maridaki M, Palikaras K. et al. The role of mitophagy in skeletal muscle damage and regeneration. Cells 2023 12. 5
- 4 Craig DM, Ashcroft SP, Belew MY. et al. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis. Front Physiol 2015; 6: 296
- 5 Fuhrmann DC, Brune B. Mitochondrial composition and function under the control of hypoxia. Redox Biol 2017; 12: 208-15
- 6 Gehlert S, Bloch W, Suhr F. Ca2 + -dependent regulations and signaling in skeletal muscle: From electro-mechanical coupling to adaptation. Int J Mol Sci 2015; 16 (1) 1066-95
- 7 Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol 2017; 8: 713
- 8 Hafen PS, Preece CN, Sorensen JR. et al. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985) 2018; 125 (5) 1447-55
- 9 Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 1980; 45 (2/3) 255-63
- 10 Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol 2008; 59 (Suppl. 7) 5-18
- 11 Jezek P, Dlaskova A, Engstova H. et al. Mitochondrial physiology of cellular redox regulations. Physiol Res 2024; 73 (Suppl. 1) 217-42
- 12 Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 2000; 29 (6) 373-86
- 13 Laursen PB. Training for intense exercise performance: High-intensity or high-volume training?. Scand J Med Sci Sports 2010; 20 (Suppl. 2) 1-10
- 14 Li Y, Huang W, Yu Q. et al. Lower mitochondrial DNA content relates to high-altitude adaptation in Tibetans. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27 (1) 753-7
- 15 Millet GP, Roels B, Schmitt L. et al. Combining hypoxic methods for peak performance. Sports Med 2010; 40 (1) 1-25
- 16 Morrison D, Hughes J, Della Gatta PA. et al. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med 2015; 89: 852-62
- 17 Otto JM, Montgomery HE, Richards T. Haemoglobin concentration and mass as determinants of exercise performance and of surgical outcome. Extrem Physiol Med 2013; 2 (1) 33
- 18 Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018; 98 (4) 2133-223
- 19 Picard M, McEwen BS, Epel ES. et al. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49: 72-85
- 20 Pignanelli C, Christiansen D, Burr JF. Blood flow restriction training and the high-performance athlete: Science to application. J Appl Physiol (1985) 2021; 130 (4) 1163-70
- 21 Power GA, Dalton BH, Behm DG. et al. Motor unit number estimates in masters runners: Use it or lose it?. Med Sci Sports Exerc 2010; 42 (9) 1644-50
- 22 Psilander N, Frank P, Flockhart M. et al. Exercise with low glycogen increases PGC-1alpha gene expression in human skeletal muscle. Eur J Appl Physiol 2013; 113 (4) 951-63
- 23 Sergi D, Naumovski N, Heilbronn LK. et al. Mitochondrial (dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet. Front Physiol 2019; 10: 532
- 24 Siasos G, Tsigkou V, Kosmopoulos M. et al. Mitochondria and cardiovascular diseases – From pathophysiology to treatment. Ann Transl Med 2018; 6 (12) 256
- 25 Tripp TR, Frankish BP, Lun V. et al. Time course and fibre type-dependent nature of calcium-handling protein responses to sprint interval exercise in human skeletal muscle. J Physiol 2022; 600 (12) 2897-917
- 26 Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry: Life at the molecular level.. Wiley; 2016
- 27 Wahl P, Bloch W, Proschinger S. The molecular signature of high-intensity training in the human body. Int J Sports Med 2022; 43 (3) 195-205
- 28 Wallace DC. A mitochondrial bioenergetic etiology of disease. J Clin Invest 2013; 123 (4) 1405-12
- 29 Wang L, Mascher H, Psilander N. et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol (1985) 2011; 111 (5) 1335-44
- 30 Yoboue ED, Devin A. Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol 2012; 2012: 403870
- 31 Zinner C, Morales-Alamo D, Ortenblad N. et al. The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans. Front Physiol 2016; 7: 426
- 32 Zoladz JA, Majerczak J, Galganski L. et al. Endurance training increases the running performance of untrained men without changing the mitochondrial volume density in the gastrocnemius muscle. Int J Mol Sci 2022 23. 18