Subscribe to RSS
DOI: 10.1055/a-2625-4975
Pulmonale Hypertonie im Kindesalter – Ein Update vom Weltsymposium Pulmonale Hypertonie 2024
Pulmonary Hypertension in Childhood – An Update from the World Symposium on Pulmonary Hypertension 2024Authors

Zusammenfassung
Pulmonale Hypertonie (PH) kann in jeder Lebensphase, vom Neugeborenen- bis in das Erwachsenenalter auftreten, wobei bei Kindern teils sehr spezifische, altersabhängige Besonderheiten berücksichtigt werden müssen. Pulmonale Hypertonie im Kindesalter ist kein umschriebenes Krankheitsbild, sondern beschreibt einen hämodynamischen Zustand, dem unterschiedliche Ursachen zugrunde liegen können, die eine altersgemäße, vollständige, leitliniengerechte, diagnostische Abklärung erfordern, um eine korrekte Phänotypisierung, Charakterisierung und Klassifikation sowie zielgerichtete Behandlung der zugrunde liegenden Erkrankung zu ermöglichen. In ihrem aktuellen Bericht vom Welt-Symposium zur Pulmonalen Hypertonie (WSPH) 2024 fasst die pädiatrische Arbeitsgruppe neue Daten und Entwicklungen zusammen, die zu aktualisierten Konsensempfehlungen hinsichtlich Diagnose und Behandlung der PH im Kindesalter geführt haben. Dazu gehören eine alterskorrelierte Charakterisierung und Definition der pädiatrischen PH, eine erweiterte Risikoabschätzung bei Kindern sowie ein neuer Behandlungsalgorithmus, der erstmals auch kardiopulmonale Komorbiditäten berücksichtigt. Das vorliegende Manuskript bietet ein Update über die wichtigsten Neuerungen vom WSPH, ergänzt durch Expertenkommentare unter Bezug auf rezente Literatur.
Abstract
Pulmonary hypertension (PH) can occur at any stage of life, from neonatal to adulthood, although very specific, age-dependent characteristics must be taken into account in children. Pulmonary hypertension in children is not a circumscribed clinical picture, but describes a haemodynamic condition that can be caused by different factors, which require an age-appropriate, complete, guideline-based diagnostic clarification in order to enable correct phenotyping, characterization and classification, as well as targeted treatment of the underlying disease. In their recent report from the World Symposium on Pulmonary Hypertension (WSPH) 2024, the pediatric task force summarized new data and developments that have led to updated consensus recommendations regarding the diagnosis and treatment of PH in childhood. These include an age-correlated characterization and definition of pediatric PH, expanded risk assessment in children, and a new treatment algorithm that includes cardiopulmonary comorbidities for the first time. This manuscript provides an update on the most important innovations of the WSPH, supplemented by expert commentary with reference to recent literature.
Schlüsselwörter
Pädiatrische Pulmonale Hypertonie - pulmonal arterielle Hypertonie - angeborene Herzfehler - pädiatrische Kardiologie - Risikofaktoren - TherapiealgorithmusKeywords
pediatric pulmonary hypertension - pulmonary arterial hypertension - congenital heart disease - pediatric cardiology - risk assessment - treatment algorithmPublication History
Article published online:
06 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Rosenzweig EB, Abman SH, Adatia I. et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J 2019; 53: 1801916
- 2 Ivy DD, Abman SH, Barst RJ. et al. Pediatric pulmonary hypertension. J Am Coll Cardiol 2013; 62 (Suppl. 25) D117-D126
- 3 Apitz C, Kozlik-Feldmann R, Eichstaedt CA. et al. [New aspects in pediatric pulmonary hypertension – Commented 2022ERS/ESC-PH guidelines]. Pneumologie 2023; 77: 947-955
- 4 Rosenzweig EB, Bates A, Mullen MP. et al. Cardiac catheterization and hemodynamics in a multicenter cohort of children with pulmonary hypertension. Ann Am Thorac Soc 2022; 19: 1000-1012
- 5 Wacker J, Humpl T, Berger RMF. et al. Application of a modified clinical classification for pulmonary arterial hypertension associated with congenital heart disease in children: emphasis on atrial septal defects and transposition of the great arteries. An analysis from the TOPP registry. Front Cardiovasc Med 2024; 11: 1344014
- 6 Kovacs G, Bartolome S, Denton CP. et al. Definition, classification and diagnosis of pulmonary hypertension. Eur Respir J 2024; 64: 2401324
- 7 Karl S, Grünig E, Shaukat M. et al. Pathogenic SMAD6 variants in patients with idiopathic and complex congenital heart disease associated pulmonary arterial hypertension. NPJ Genom Med 2025; 10: 28
- 8 Austin ED, Aldred MA, Alotaibi M. et al. Genetics and precision genomics approaches to pulmonary hypertension. Eur Respir J 2024; 2401370
- 9 Moledina S, Hislop AA, Foster H. et al. Childhood idiopathic pulmonary arterial hypertension: a national cohort study. Heart 2010; 96: 1401-1406
- 10 Ploegstra MJ, Ivy DD, Beghetti M. et al. Long-term outcome of children with newly diagnosed pulmonary arterial hypertension: results from the global TOPP registry. Eur Heart J Qual Care Clin Outcomes 2024; 10: 66-76
- 11 Zijlstra WMH, Douwes JM, Rosenzweig EB. et al. Survival differences in pediatric pulmonary arterial hypertension: clues to a better understanding of outcome and optimal treatment strategies. J Am Coll Cardiol 2014; 63: 2159-2169
- 12 Ploegstra MJ, Douwes JM, Roofthooft MT. et al. Identification of treatment goals in paediatric pulmonary arterial hypertension. Eur Respir J 2014; 44: 1616-1626
- 13 Lammers AE, Marek J, Diller GP. et al. Prognostic value of transthoracic echocardiography in children with pulmonary arterial hypertension. J Am Heart Assoc 2023; 12: e023118
- 14 Ploegstra MJ, Zijlstra WMH, Douwes JM. et al. Prognostic factors in pediatric pulmonary arterial hypertension: a systematic review and meta-analysis. Int J Cardiol 2015; 184: 198-207
- 15 Rosenzweig EB, Ivy DD, Widlitz A. et al. Effects of long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol 2005; 46: 697-704
- 16 Ivy DD, Rosenzweig EB, Lemarié JC. et al. Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings. Am J Cardiol 2010; 106: 1332-1338
- 17 Gu L, Li YY, Gu L. et al. Idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease in Chinese children: similarities, differences, and prognostic factors. Front Pediatr 2020; 8: 106
- 18 van Loon RL, Roofthooft MT, Delhaas T. et al. Outcome of pediatric patients with pulmonary arterial hypertension in the era of new medical therapies. Am J Cardiol 2010; 106: 117-124
- 19 Qian Y, Quan R, Chen X. et al. Characteristics, long-term survival, and risk assessment of pediatric pulmonary arterial hypertension in China: insights from a national multicenter prospective registry. Chest 2023; 163: 1531-1542
- 20 Miyamoto K, Inai K, Kobayashi T. et al. Outcomes of idiopathic pulmonary arterial hypertension in Japanese children: a retrospective cohort study. Heart Vessels 2021; 36: 1392-1399
- 21 Ploegstra MJ, Roofthooft MT, Douwes JM. et al. Echocardiography in pediatric pulmonary arterial hypertension: early study on assessing disease severity and predicting outcome. Circ Cardiovasc Imaging 2014; 8: e000878
- 22 Kassem E, Humpl T, Friedberg MK. Prognostic significance of 2-dimensional, M-mode, and Doppler echo indices of right ventricular function in children with pulmonary arterial hypertension. Am Heart J 2013; 165: 1024-1031
- 23 Duncan M, Wagner BD, Murray K. et al. Circulating cytokines and growth factors in pediatric pulmonary hypertension. Mediators Inflamm 2012; 2012: 143428
- 24 Said F, Haarman MG, Roofthooft MTR. et al. Serial measurements of N-terminal pro-B-type natriuretic peptide serum level for monitoring pulmonary arterial hypertension in children. J Pediatr 2020; 220: 139-145
- 25 Van Albada ME, Loot FG, Fokkema R. et al. Biological serum markers in the management of pediatric pulmonary arterial hypertension. Pediatr Res 2008; 63: 321-327
- 26 Grynblat J, Malekzadeh-Milani SG, Meot M. et al. Monitoring of hemodynamics with right heart catheterization in children with pulmonary arterial hypertension. J Am Heart Assoc 2023; 12: e029085
- 27 Kumar S, Vadlamudi K, Kaddoura T. et al. Active right atrial emptying fraction predicts reduced survival and increased adverse events in childhood pulmonary arterial hypertension. Int J Cardiol 2018; 271: 306-311
- 28 Jone PN, Schäfer M, Pan Z. et al. 3D echocardiographic evaluation of right ventricular function and strain: a prognostic study in paediatric pulmonary hypertension. Eur Heart J Cardiovasc Imaging 2018; 19: 1026-1033
- 29 Okumura K, Humpl T, Dragulescu A. et al. Longitudinal assessment of right ventricular myocardial strain in relation to transplant-free survival in children with idiopathic pulmonary hypertension. J Am Soc Echocardiogr 2014; 27: 1344-1351
- 30 Muntean I, Benedek T, Melinte M. et al. Deformation pattern and predictive value of right ventricular longitudinal strain in children with pulmonary arterial hypertension. Cardiovasc Ultrasound 2016; 14: 27
- 31 Moledina S, Pandya B, Bartsota M. et al. Prognostic significance of cardiac magnetic resonance imaging in children with pulmonary hypertension. Circ Cardiovasc Imaging 2013; 6: 407-414
- 32 Ta HT, Critser PJ, Schäfer M. et al. Ventricular global function index is associated with clinical outcomes in pediatric pulmonary hypertension. J Cardiovasc Magn Reson 2023; 25: 39
- 33 Haarman MG, Coenraad I, Hagdorn QAJ. et al. Cardiac magnetic resonance derived left ventricular eccentricity index and right ventricular mass measurements predict outcome in children with pulmonary arterial hypertension. Children 2023; 10: 756
- 34 Torres G, Lancaster AC, Yang J. et al. Low-affinity insulin-like growth factor binding protein 7 and its association with pulmonary arterial hypertension severity and survival. Pulm Circ 2023; 13: e12284
- 35 Nies MK, Yang J, Griffiths M. et al. Proteomics discovery of pulmonary hypertension biomarkers: insulin-like growth factor binding proteins are associated with disease severity. Pulm Circ 2022; 12: e12039
- 36 Yang J, Griffiths M, Nies MK. et al. Insulin-like growth factor binding protein-2: a new circulating indicator of pulmonary arterial hypertension severity and survival. BMC Med 2020; 18: 268
- 37 Griffiths M, Yang J, Nies M. et al. Pediatric pulmonary hypertension: insulin-like growth factor-binding protein 2 is a novel marker associated with disease severity and survival. Pediatr Res 2020; 88: 850-856
- 38 Chen JY, Griffiths M, Yang J. et al. Elevated interleukin-6 levels predict clinical worsening in pediatric pulmonary arterial hypertension. J Pediatr 2020; 223: 164-169
- 39 Yeager ME, Colvin KL, Everett AD. et al. Plasma proteomics of differential outcome to long-term therapy in children with idiopathic pulmonary arterial hypertension. Proteomics Clin Appl 2012; 6: 257-267
- 40 Griffiths M, Yang J, Simpson CE. et al. ST2 is a biomarker of pediatric pulmonary arterial hypertension severity and clinical worsening. Chest 2021; 160: 297-306
- 41 Arjaans S, Wagner BD, Mourani PM. et al. Early angiogenic proteins associated with high risk for bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Am J Physiol Lung Cell Mol Physiol 2020; 318: L644-L654
- 42 Lokhorst C, van der Werf S, Berger RMF. et al. Risk stratification in adult and pediatric pulmonary arterial hypertension: a systematic review. Front Cardiovasc Med 2022; 9: 1035453
- 43 Lokhorst C, van der Werf S, Berger RMF. et al. Prognostic value of serial risk stratification in adult and pediatric pulmonary arterial hypertension: a systematic review. J Am Heart Assoc 2024; 13: e034151
- 44 Haarman MG, Douwes JM, Ploegstra MJ. et al. The clinical value of proposed risk stratification tools in pediatric pulmonary arterial hypertension. Am J Respir Crit Care Med 2019; 200: 1312-1315
- 45 Welch CL, Chung WK. Genetics and genomics of pediatric pulmonary arterial hypertension. Genes 2020; 11: 1213
- 46 Haarman MG, Kerstjens-Frederikse WS, Vissia-Kazemier TR. et al. The genetic epidemiology of pediatric pulmonary arterial hypertension. J Pediatr 2020; 225: 65-73
- 47 Ivy D, Bonnet D, Berger RMF. et al. Efficacy and safety of tadalafil in a pediatric population with pulmonary arterial hypertension: phase 3 randomized, double-blind placebo-controlled study. Pulm Circ 2021; 11 20458940211024955
- 48 Ivy D, Beghetti M, Juaneda-Simian E. et al. A randomized study of safety and efficacy of two doses of ambrisentan to treat pulmonary arterial hypertension in pediatric patients aged 8 years up to 18 years. J Pediatr X 2020; 5: 100055
- 49 García Aguilar H, Gorenflo M, Ivy DD. et al. Riociguat in children with pulmonary arterial hypertension: the PATENT-CHILD study. Pulm Circ 2022; 12: e12133
- 50 Domingo LT, Ivy DD, Abman SH. et al. Novel use of riociguat in infants with severe pulmonary arterial hypertension unable to wean from inhaled nitric oxide. Front Pediatr 2022; 10: 1014922
- 51 Chester M, Seedorf G, Tourneux P. et al. Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2011; 301: L755-L764
- 52 Benza RL, Grünig E, Sandner P. et al. The nitric oxide-soluble guanylate cyclase-cGMP pathway in pulmonary hypertension: from PDE5 to soluble guanylate cyclase. Eur Respir Rev 2024; 33: 230183
- 53 Giesinger RE, Stanford AH, Thomas B. et al. Safety and feasibility of riociguat therapy for the treatment of chronic pulmonary arterial hypertension in infancy. J Pediatr 2023; 255: 224-229
- 54 Albinni S, Heno J, Pavo I. et al. Macitentan in the young-mid-term outcomes of patients with pulmonary hypertensive vascular disease treated in a pediatric tertiary care center. Paediatr Drugs 2023; 25: 467-481
- 55 Youssef D, Richards S, Lague S. et al. A Canadian, retrospective, multicenter experience with selexipag for a heterogeneous group of pediatric pulmonary hypertension patients. Front Pediatr 2023; 11: 1055158
- 56 Li M, Liu L, Liu C. et al. Selexipag for the treatment of pediatric pulmonary hypertension: a systematic review. Clin Ther 2024; 46: 59-68
- 57 Hansmann G, Apitz C, Humpl T. et al. Dringende Notwendigkeit des Off-label-Einsatzes von PAH-Medikamenten und deren Erstattung bei Kindern mit pulmonaler Hypertonie (Lungenhochdruck). Stellungnahme der Arbeitsgruppe Pulmonale Hypertonie der Deutschen Gesellschaft für Pädiatrische Kardiologie und Angeborene Herzfehler (DGPK). Monatsschr Kinderheilkunde 2020; 168: 733-738
- 58 McLaughlin V, Channick RN, Ghofrani HA. et al. Bosentan added to sildenafil therapy in patients with pulmonary arterial hypertension. Eur Respir J 2015; 46: 405-413
- 59 Grünig E, Ohnesorge J, Benjamin N. et al. Plasma Drug Concentrations in Patients with Pulmonary Arterial Hypertension on Combination Treatment. Respiration 2017; 94: 26-37
- 60 Gomberg-Maitland M, McLaughlin VV, Badesch DB. et al. Long-term effects of sotatercept on right ventricular function: results from the PULSAR study. JACC Heart Fail 2023; 11: 1457-1459
- 61 Hoeper MM, Badesch DB, Ghofrani HA. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N Engl J Med 2023; 388: 1478-1490
- 62 Humbert M, McLaughlin V, Gibbs JSR. et al. Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med 2021; 384: 1204-1215
- 63 Haarman MG, Lévy M, Roofthooft MTR. et al. Upfront triple combination therapy in severe paediatric pulmonary arterial hypertension. Eur Respir J 2021; 57: 2001120
- 64 Douwes JM, Roofthooft MT, Van Loon RL. et al. Sildenafil add-on therapy in paediatric pulmonary arterial hypertension, experiences of a national referral centre. Heart 2014; 100: 224-230
- 65 Douwes JM, Humpl T, Bonnet D. et al. Acute vasodilator response in pediatric pulmonary arterial hypertension: current clinical practice from the TOPP registry. J Am Coll Cardiol 2016; 67: 1312-1323
- 66 Yung D, Widlitz AC, Rosenzweig EB. et al. Outcomes in children with idiopathic pulmonary arterial hypertension. Circulation 2004; 110: 660-665
- 67 Savale L, Benazzo A, Corris P. et al. Transplantation, bridging, and support technologies in pulmonary hypertension. Eur Respir J 2024; 64: 2401193
- 68 Sandoval J, Rothman A, Pulido T. Atrial septostomy for pulmonary hypertension. Clin Chest Med 2001; 22: 547-560
- 69 Sandoval J, Gaspar J, Pulido T. et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension. A therapeutic alternative for patients nonresponsive to vasodilator treatment. J Am Coll Cardiol 1998; 32: 297-304
- 70 Sivakumar K, Rohitraj GR, Rajendran M. et al. Study of the effect of Occlutech Atrial Flow Regulator on symptoms, hemodynamics, and echocardiographic parameters in advanced pulmonary arterial hypertension. Pulm Circ 2021; 11 2045894021989966
- 71 Butera G, Piccinelli E, Kolesnik A. et al. Implantation of atrial flow regulator devices in patients with congenital heart disease and children with severe pulmonary hypertension or cardiomyopathy – an international multicenter case series. Front Cardiovasc Med 2024; 10: 1332395
- 72 Vanhie E, VandeKerckhove K, Haas NA. et al. Atrial flow regulator for drug-resistant pulmonary hypertension in a young child. Catheter Cardiovasc Interv 2021; 97: E830-E834
- 73 Pattathu J, Michel S, Tengler AI. et al. Case report: Beneficial long-term effect of the atrial-flow-regulator device in a pediatric patient with idiopathic pulmonary arterial hypertension and recurring syncope. Front Cardiovasc Med 2023; 10: 1197985
- 74 Grady RM, Canter MW, Wan F. et al. Pulmonary-to-systemic arterial shunt to treat children with severe pulmonary hypertension. J Am Coll Cardiol 2021; 78: 468-477
- 75 Valdeolmillos E, Le Pavec J, Audié M. et al. Thirty years of surgical management of pediatric pulmonary hypertension: mid-term outcomes following reverse Potts shunt and transplantation. J Thorac Cardiovasc Surg 2024; 168: 943-954