Subscribe to RSS
DOI: 10.1055/a-2641-3059
Von der Indikationsstellung bis zur Befundung: Potential von Large Language Models im radiologischen Workflow
Article in several languages: English | deutschSupported by: Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg

Zusammenfassung
Hintergrund
Large Language Models (LLMs) bieten angesichts steigender radiologischer Fallzahlen ein vielversprechendes Potenzial zur Optimierung und Unterstützung von Arbeitsabläufen. In dieser Übersicht sollen potenzielle Anwendungsmöglichkeiten im radiologischen Alltag, verbleibende Herausforderungen sowie potenzielle Lösungsansätze diskutiert werden.
Methode
Darstellung der Anwendungsmöglichkeiten und Herausforderungen anhand praxisnaher Beispiele mit konkreten Optimierungsvorschlägen.
Ergebnisse
In nahezu allen Schritten des radiologischen Workflows, die sprachbasierte Prozesse beinhalten, ist der Einsatz von LLM-basierten Assistenzsystemen denkbar. Besonders in der Befunderstellung wurden in den letzten Jahren durch Retrieval-Augmented Generation (RAG) und mehrstufige Argumentationsansätze bedeutende Fortschritte erzielt. Vor einer breiten Implementierung müssen jedoch bleibende Herausforderungen wie Halluzinationen, Reproduzierbarkeit sowie datenschutzrechtliche und ethische Bedenken adressiert werden.
Schlussfolgerung
LLMs haben ein enormes Potenzial in der Radiologie, insbesondere zur Unterstützung sprachbasierter Prozessschritte, wobei technologische Fortschritte wie RAG und cloud-basierte Ansätze die klinische Implementierung näherbringen könnten.
Kernaussagen
-
LLMs können mit Technologien wie Retrieval-Augmented Generation (RAG) und mit mehrstufigen Argumentationsansätzen die Befunderstellung und andere sprachbasierte Prozesse in der Radiologie verbessern.
-
Vor einer breiten Anwendung müssen Herausforderungen wie Halluzinationen, Reproduzierbarkeit sowie datenschutzrechtliche und ethische Bedenken gelöst werden.
-
RAG und cloud-basierte Ansätze könnten helfen, diese Herausforderungen zu überwinden und die klinische Implementierung von LLMs voranzutreiben.
Zitierweise
-
Fink A, Rau S, Kästingschäfer K et al. From Referral to Reporting: The Potential of Large Language Models in the Radiological Workflow. Rofo 2025; DOI 10.1055/a-2641-3059
Publication History
Received: 25 March 2025
Accepted after revision: 16 June 2025
Article published online:
16 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 McDonald RJ, Schwartz KM, Eckel LJ. et al. The Effects of Changes in Utilization and Technological Advancements of Cross-Sectional Imaging on Radiologist Workload. Acad Radiol 2015; 22: 1191-8
- 2 Kasalak Ö, Alnahwi H, Toxopeus R. et al. Work overload and diagnostic errors in radiology. Eur J Radiol 2023; 167: 111032
- 3 OpenAIAchiam J, Adler S. et al. GPT-4 Technical Report. arXiv;. 2024 Accessed March 12, 2025 at: http://arxiv.org/abs/2303.08774
- 4 Enis M, Hopkins M. From LLM to NMT: Advancing Low-Resource Machine Translation with Claude. arXiv;. 2024 Accessed March 12, 2025 at: http://arxiv.org/abs/2404.13813
- 5 Team G, Anil R, Borgeaud S. et al. Gemini: A Family of Highly Capable Multimodal Models. arXiv;. 2024 Accessed March 12, 2025 at: http://arxiv.org/abs/2312.11805
- 6 Gertz RJ, Bunck AC, Lennartz S. et al. GPT-4 for Automated Determination of Radiologic Study and Protocol Based on Radiology Request Forms: A Feasibility Study. Radiology 2023; 307: e230877
- 7 Rau A, Rau S, Zöller D. et al. A Context-based Chatbot Surpasses Radiologists and Generic ChatGPT in Following the ACR Appropriateness Guidelines. Radiology 2023; 308: e230970
- 8 Fink A, Nattenmüller J, Rau S. et al. Retrieval-augmented generation improves precision and trust of a GPT-4 model for emergency radiology diagnosis and classification: A proof-of-concept study. Eur Radiol 2025;
- 9 Rau S, Rau A, Nattenmüller J. et al. A retrieval-augmented chatbot based on GPT-4 provides appropriate differential diagnosis in gastrointestinal radiology: A proof of concept study. Eur Radiol Exp 2024; 8: 1-8
- 10 Amin KS, Davis MA, Doshi R. et al. Accuracy of ChatGPT, Google Bard, and Microsoft Bing for Simplifying Radiology Reports. Radiology 2023; 309: e232561
- 11 Bhayana R, Krishna S, Bleakney RR. Performance of ChatGPT on a Radiology Board-style Examination: Insights into Current Strengths and Limitations. Radiology 2023; 307: e230582
- 12 Bhayana R. Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applications. Radiology 2024; 310: e232756
- 13 Sallam M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023; 11: 887
- 14 Srivastav S, Chandrakar R, Gupta S. et al. ChatGPT in Radiology: The Advantages and Limitations of Artificial Intelligence for Medical Imaging Diagnosis. Cureus 2023; 15: e41435
- 15 European Society of Radiology (ESR). What the radiologist should know about artificial intelligence – an ESR white paper. Insights Imaging 2019; 10: 44
- 16 Strohm L, Hehakaya C, Ranschaert ER. et al. Implementation of artificial intelligence (AI) applications in radiology: Hindering and facilitating factors. Eur Radiol 2020; 30: 5525-5532
- 17 Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc 2011; 18: 544-51
- 18 Vaswani A, Shazeer N, Parmar N. et al. Attention Is All You Need. arXiv;. 2023 Accessed March 12, 2025 at: http://arxiv.org/abs/1706.03762
- 19 Fink A, Rau A, Kotter E. et al. Optimierte Interaktion mit Large Language Models. Radiologie 2025;
- 20 Lewis P, Perez E, Piktus A. et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv;. 2021 Accessed November 21, 2024 at: http://arxiv.org/abs/2005.11401
- 21 Rosen S, Saban M. Evaluating the reliability of ChatGPT as a tool for imaging test referral: a comparative study with a clinical decision support system. Eur Radiol 2024; 34: 2826-37
- 22 Barash Y, Klang E, Konen E. et al. ChatGPT-4 Assistance in Optimizing Emergency Department Radiology Referrals and Imaging Selection. J Am Coll Radiol 2023; 20: 998-1003
- 23 Brown TB, Mann B, Ryder N. et al. Language Models are Few-Shot Learners. arXiv;. 2020 Accessed November 21, 2024 at: http://arxiv.org/abs/2005.14165
- 24 Russe MF, Rau A, Ermer MA. et al. A content-aware chatbot based on GPT 4 provides trustworthy recommendations for Cone-Beam CT guidelines in dental imaging. Dentomaxillofac Radiol 2024; 53: 109-14
- 25 Castillo C, Steffens T, Sim L. et al. The effect of clinical information on radiology reporting: A systematic review. J Med Radiat Sci 2021; 68: 60-74
- 26 Chen PS, Lai CH, Chen YT. et al. Developing a prototype system of computer-aided appointment scheduling: A radiology department case study. Technol Health Care 2024; 32: 997-1013
- 27 Russe MF, Reisert M, Bamberg F. et al. Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning. Rofo 2024; 196: 1166-70
- 28 Laukamp KR, Terzis RA, Werner JM. et al. Monitoring Patients with Glioblastoma by Using a Large Language Model: Accurate Summarization of Radiology Reports with GPT-4. Radiology 2024; 312: e232640
- 29 Fink MA, Bischoff A, Fink CA. et al. Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer. Radiology 2023; 308: e231362
- 30 Bhayana R, Nanda B, Dehkharghanian T. et al. Large Language Models for Automated Synoptic Reports and Resectability Categorization in Pancreatic Cancer. Radiology 2024; 311: e233117
- 31 Kim S, Kim D, Shin HJ. et al. Large-Scale Validation of the Feasibility of GPT-4 as a Proofreading Tool for Head CT Reports. Radiology 2025; 314: e240701
- 32 Gertz RJ, Dratsch T, Bunck AC. et al. Potential of GPT-4 for Detecting Errors in Radiology Reports: Implications for Reporting Accuracy. Radiology 2024; 311: e232714
- 33 Rad AI to Unveil Next-Generation Intelligent Radiology Reporting Solution at Launch Event. Accessed March 12, 2025 at: https://www.radai.com/news/rad-ai-to-unveil-next-generation-intelligent-radiology-reporting-solution-at-launch-event
- 34 PowerScribe One: Microsoft Cloud For Healthcare. Accessed March 12, 2025 at: https://www.microsoft.com/en-us/health-solutions/radiology-workflow/powerscribe-one
- 35 Meddeb A, Lüken S, Busch F. et al. Large Language Model Ability to Translate CT and MRI Free-Text Radiology Reports Into Multiple Languages. Radiology 2024; 313: e241736
- 36 Krishna S, Bhambra N, Bleakney R. et al. Evaluation of Reliability, Repeatability, Robustness, and Confidence of GPT-3.5 and GPT-4 on a Radiology Board-style Examination. Radiology 2024; 311: e232715
- 37 Rahsepar AA, Tavakoli N, Kim GHJ. et al. How AI Responds to Common Lung Cancer Questions: ChatGPT versus Google Bard. Radiology 2023; 307: e230922
- 38 Sun SH, Huynh K, Cortes G. et al. Testing the Ability and Limitations of ChatGPT to Generate Differential Diagnoses from Transcribed Radiologic Findings. Radiology 2024; 313: e232346
- 39 Liu NF, Lin K, Hewitt J. et al. Lost in the Middle: How Language Models Use Long Contexts. arXiv;. 2023 Accessed November 21, 2024 at: http://arxiv.org/abs/2307.03172
- 40 Bhayana R, Fawzy A, Deng Y. et al. Retrieval-Augmented Generation for Large Language Models in Radiology: Another Leap Forward in Board Examination Performance. Radiology 2024; 313: e241489
- 41 Russe MF, Fink A, Ngo H. et al. Performance of ChatGPT, human radiologists, and context-aware ChatGPT in identifying AO codes from radiology reports. Sci Rep 2023; 13: 14215
- 42 RG TEAM Top 10 Reading List. Accessed March 12, 2025 at: https://pubs.rsna.org/page/radiographics/rgteam/top10_trauma
- 43 OpenAI Platform. Accessed March 30, 2024 at: https://platform.openai.com
- 44 Ravuru C, Sakhinana SS, Runkana V. Agentic Retrieval-Augmented Generation for Time Series Analysis. arXiv;. 2024 Accessed November 21, 2024 at: http://arxiv.org/abs/2408.14484
- 45 Shen Y, Heacock L, Elias J. et al. ChatGPT and Other Large Language Models Are Double-edged Swords. Radiology 2023; 307: e230163
- 46 Amazon Web Services, Inc. Amazon Web Services AWS – Server Hosting & Cloud Services. Accessed February 01, 2025 at: https://aws.amazon.com/de/
- 47 Google Cloud. Sovereign Cloud Solutions. Accessed February 01, 2025 at: https://cloud.google.com/sovereign-cloud
- 48 Microsoft Cloud for Sovereignty. Accessed February 01, 2025 at: https://www.microsoft.com/en-us/industry/sovereignty/cloud
- 49 Kotter E, D’Antonoli TA, Cuocolo R. et al. Guiding AI in radiology: ESR’s recommendations for effective implementation of the European AI Act. Insights Imaging 2025; 16: 1-11
- 50 Bundesärztekammer. [German Medical Association] Statement regarding “Artificial Intelligence in Medicine.”. Dtsch Arztebl International 2025; 4: 238
- 51 Lee P, Bubeck S, Petro J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med 2023; 388: 1233-39